REGULATIONS, COURSE STRUCTURE AND SYLLABUS

B.Tech.

for

Artificial Intelligence & Machine Learning

With effective from the Academic Year

2021-2022

INSTITUTE OF
TECHNOLOGY &
ENGINEERINGAccredited by NAAC with "A" Grade,
Recognised by UGC under section 2(f) &12(B)
Approved by AICTE - New Delhi
Permanently Affiliated to JNTUK, SBTET,
Ranked as "A" Grade by Govt. of A.P.,

B. Tech Regulations

1.1 Short title and Commencement

The regulations listed under this head are common for all degree level under graduate programs (B.Tech.) offered by the college with effect from the academic year 2021-22 and they are called as "SITE21" regulations.

The regulations here under are subject to amendments as may be made by the Academic Council of the college from time to time, keeping the recommendations of the Board of Studies in view. Any or all such amendments will be effective from such date and to such batches of candidates including those already undergoing the program, as may be decided by the Academic Council.

1.2. Definitions

- a. "Commission" means University Grants Commission(UGC)
- b. "Council" means All India Council for Technical Education(AICTE)
- c. "University" Means Jawaharlal Nehru Technological University Kakinada(JNTUK)
- d. "College" means Sasi Institute of Technology & Engineering, Tadepalligudem.
- e. "Program" Means any combination of courses and /or requirements leading to award of a degree
- f. "Course" Means a subject either theory or practical identified by its course title and code number and which is normally studied in asemester.
- g. For example, (ELECTRONC DEVICES) is a course offered at third semester of B.Tech (ECT) and its code is (21ETETT3030)
- h. "Degree" means an academic degree conferred by the university upon those who complete the undergraduate curriculum
- i. "Regular Student" means student enrolled into the four year programme in the firstyear
- j. "Lateral entry Students" Means student enrolled into the four year programme in the secondyear

1.3. Academic Programs

1.3.1. Nomenclature of Programs

The nomenclature and its abbreviation given below shall continue to be used for the degree programs under the University, as required by the Council and Commission. The name of specialization shall be indicated in brackets after the abbreviation. For e.g. UG engineering degree in Mechanical Engineering program is abbreviated as B.Tech. (ME). Bachelor of Technology (B.Tech.) degree program offered in:

- 1. Artificial Intelligence & Machine Learning (AI & ML)
- 2. Civil Engineering (CE)
- 3. Computer Science and Engineering (CSE)
- 4. Computer Science and Technology (CST)
- 5. Electronics and Communication Engineering (ECE)
- 6. Electronics and Communication Technology (ECT)
- 7. Electrical and Electronics Engineering (EEE)
- 8. Information Technology (IT)
- 9. Mechanical Engineering (ME)
- Curriculum framework is important in setting the right direction for a Degree program as it takes into account the type and quantum of knowledge necessary to be acquired by a student to qualify for a award in his/her chosen branch or specialization.
- Besides, this also helps in assigning the credits for each course, sequencing the courses semester-wise and finally arriving at the total number of courses to be studied and the total number of credits to be earned by a student to fulfill the requirements for

conferment of degree.

- Each theory course shall consist of five units.

1.3.2. Curriculum Structure

The curriculum structure is designed in such a way that it facilitates the courses required to attain the expected knowledge, skills and attitude by the time of their graduation as per the needs of the stakeholders. The curriculum structure consists of various course categories (as described in 1.6.3 to 1.6.9) to cover the depth and breadth required for the program and for the attainment of program outcomes of the corresponding program. Each Programme of study will be designed to have 40-45 theory courses and 16-18 laboratory courses. The distribution and types of courses offered from the above is indicated in the following table 3.

1.3.3. Induction Program

The Induction Program for two weeks is designed to make the newly joined students feel comfortable, sensitize them towards exploring their academic interests and activities, reducing competition and making them work for excellence, promote bonding within them, build relations between teachers and students and building of character. Induction program covers

Physical activity Creative arts Universal human values Literary and Proficiency modules Lectures by Eminent peoples

1.4Admission Criteria

The eligibility criteria for admission into UG engineering programs are as per the norms approved by government of Andhra Pradesh from time to time. The sanctioned seats in each program in the college are classified into CATEGORY-A and CATEGORY-B at first year level and Lateral Entry at second year level.

- **CATEGORY A Seats:** These seats will be filled as per the norms approved by the Government of Andhra Pradesh.
- **CATEGORY B Seats:** These seats will be filled by the College as per the norms approved by the Government of Andhra Pradesh.
- **CATEGORY Lateral Entry Seats**: Lateral entry candidates shall be admitted into the Third semester directly as per the norms approved by government of Andhra Pradesh. The percentages of Category-A, Category-B and Lateral Entry Seats are decided time to time by the Government of Andhra Pradesh.

2. Award of B. Tech. Degree

- a) A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:
 - i. A student shall be declared eligible for the award of B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years. After eight academic years from the year of their admission, he/she shall forfeit their seat in B.Tech course and their admission stands cancelled.
 - ii. The candidate shall register for 160 credits and secure all the 160 credits.
- b) The medium of instruction for the entire under graduate programmer in Engineering &Technology will be in **English** only.

3. Programme Pattern:

- a) Total duration of the of B. Tech (Regular) Programme is four academic years
- b) Each Academic year of study is divided into Two Semesters.
- c) Minimum number of instruction days in each semester is 90.
- d) Grade points, based on percentage of marks awarded for each course will form the basis for calculation of SGPA (Semester Grade Point Average) and CGPA (Cumulative

Grade Point Average).

- e) The total credits for the Programme is 160.
- f) Three-week induction program is mandatory for all first year UG students and shall be conducted as per AICTE/UGC/APSCHE guidelines.
- g) Student is introduced to "Choice Based Credit System (CBCS)".
- h) A pool of interdisciplinary and job-oriented mandatory skill courses which are relevant to the industry are integrated into the curriculum of concerned branch of engineering (total five skill courses: two basic level skill courses, one on soft skills and other two on advanced level skill courses)
- i) A student has to register for all courses in a semester.
- j) All the registered credits will be considered for the calculation of final CGPA.
- k) Each semester has 'Continuous Internal Evaluation (CIE)' and 'Semester End Examination (SEE)'. Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) as indicated by UGC and course structure as suggested by AICTE are followed.
- 1) A 10 months industry/field mandatory internship, both industry and social, during the summer vacation and also in the final semester to acquire the skills required for job and make engineering graduates to connect with the needs of the industry and society at large.
- m) All the students shall be mandatorily registered for NCC, NSS activities and Community Service Project as per the Government and University norms.
- n) Each college shall assign a faculty advisor/mentor after admission to each student or group of students from same department to provide guidance in courses registration / career growth/placements/opportunities for higher studies/ GATE / other competitive exams etc.

4. Registration for Courses:

a) In each semester a student shall mandatorily register courses which he/she wishes to pursue within a week from the starting of the class work with the advice of Head of the Department and mentor of the student of the concerned department of the college.

b) If any student wishes to withdraw the registration of the course, he/she shall submit a letter to the Principal of the college through the Head of the Department and mentor within fifteen days.

c) The concerned college shall thoroughly verify and upload the data/courses registered by each student in the university examination center within 20 days. The Principal of the concerned college shall ensure that there no wrong registration courses by the student. The university registration portal will be closed after 20 days.

- **5.** (a) Award of B. Tech. Degree: A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:
- i. A student shall be declared eligible for award of the B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years. After eight academic years from the year of their admission, he/she shall **forfeit** their seat in B. Tech course and their admission stands cancelled.
- ii. The student shall register for 160 credits and must secure all the 160 credits.
- iii. All students shall mandatorily register for the courses like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc., shall be included in the curriculum as non-credit mandatory courses. Environmental Sciences is to be offered compulsorily as mandatory course for all branches. A student has to secure at least 40% of the marks allotted in the internal evaluation for passing the course and shall maintain 75% of attendance in the subject.
- iv. All students shall mandatorily register for NCC/NSS activities and will be required to

participate in an activity specified by NSS officer during second and third semesters. Grade shall be awarded as Satisfactory or Unsatisfactory in the mark sheet on the basis of participation, attendance, performance and behavior. If a student gets an unsatisfactory Grade, he/she shall repeat the above activity in the subsequent years, in order to complete the degree requirements.

v. Credits are defined as per AICTE norms.

(b) Award of B. Tech. (Honor):

- Students of a Department/Discipline are eligible to opt for Honors Programme offered by the same Department/Discipline
- A student shall be permitted to register for Honors program at the beginning of 4 th semester provided that the student must have acquired a minimum of 8.0 SGPA upto the end of 2 nd semester without any backlogs. In case of the declaration of the 3rd semester results after the commencement of the 4th semester and if a student fails to score the required minimum of 8 SGPA, his/her registration for Honors Programme stands cancelled and he/she shall continue with the regular Programme.
- Students can select the additional and advanced courses from their respective branch in which they are pursuing the degree and get an honors degree in the same. e.g. If a Mechanical Engineering student completes the selected advanced courses from same branch under this scheme, he/she will be awarded B.Tech. (Honors) in Mechanical Engineering.
- In addition to fulfilling all the requisites of a Regular B.Tech Programme, a student shall earn 20 additional credits to be eligible for the award of B. Tech (Honors) degree. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160 credits).
- Of the 20 additional Credits to be acquired, 16 credits shall be earned by undergoing specified courses listed as pools, with four courses, each carrying 4 credits. The remaining 4 credits must be acquired through two MOOCs, which shall be domain specific, each with 2 credits and with a minimum duration of 8/12weeks as recommended by the Board of studies.
- It is the responsibility of the student to acquire/complete prerequisite before taking the respective course. The courses offered in each pool shall be domain specific courses and advanced courses
- The concerned BoS shall decide on the minimum enrolments for offering Honors program by the department. If minimum enrolments criteria are not met then the students shall be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BoS.
- Each pool can have theory as well as laboratory courses. If a course comes with a lab component, that component has to be cleared separately. The concerned BoS shall 16 explore the possibility of introducing virtual labs for such courses with lab component.
- MOOC courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Students have to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4 credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned will be as decided by the university/academic council.
- The concerned BoS shall also consider courses listed under professional electives of the respective B. Tech programs for the requirements of B. Tech (Honors). However, a student shall be permitted to choose only those courses that he/she has not studied in any form during the Programme.
- If a student drops or is terminated from the Honors program, the additional credits so far earned cannot be converted into free or core electives; they will remain extra. These

additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and also choose to omit the mention of the course as for the following: All the courses done under the dropped Minors will be shown in the transcript. None of the courses done under the dropped Minor will be shown in the transcript.

- In case a student fails to meet the CGPA requirement for Degree with Honors at any point after registration, he/she will be dropped from the list of students eligible for Degree with Honors and they will receive regular B.Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- Honors must be completed simultaneously with a major degree program. A student cannot earn Honors after he/she has already earned bachelor's degree.

(c) Award of B. Tech. (Minors):

- a)Students who are desirous of pursuing their special interest areas other than the chosen discipline of Engineering may opt for additional courses in minor specialization groups offered by a department other than their parent department. For example, If Mechanical Engineering student selects subjects from Civil Engineering under this scheme, he/she will get Major degree of Mechanical Engineering with minor degree of Civil Engineering b) Student can also opt for Industry relevant tracks of any branch to obtain the Minor Degree, for example, a B.Tech Mechanical student can opt for the industry relevant tracks like Data Mining track, IOT track, Machine learning track etc.
- The BOS concerned shall identify as many tracks as possible in the areas of emerging technologies and industrial relevance / demand. For example, the minor tracks can be the fundamental courses in CSE, ECE, EEE, CE, ME etc or industry tracks such as Artificial Intelligence (AI), Machine Learning (ML), Data Science (DS), Robotics, Electric vehicles, Robotics, VLSI etc.
- The list of disciplines/branches eligible to opt for a particular industry relevant minor specialization shall be clearly mentioned by the respective BoS.
- There shall be no limit on the number of programs offered under Minor. The University/Institution can offer minor programs in emerging technologies based on expertise in the respective departments or can explore the possibility of collaborating with the relevant industries/agencies in offering the program.
- The concerned BoS shall decide on the minimum enrolments for offering Minor program by the department. If a minimum enrolments criterion is not met, then the students may be permitted to register for the equivalent MOOC courses as approved by the concerned Head of the department in consultation with BoS.
- A student shall be permitted to register for Minors program at the beginning of 4th semester subject to a maximum of two additional courses per semester, provided that the student must have acquired 8 SGPA (Semester Grade point average) upto the end of 2nd semester without any history of backlogs. It is expected that the 3rd semester results may be announced after the commencement of the 4th semester. If a student fails to acquire 8 SGPA upto 3rd semester or failed in any of the courses, his registration for Minors program shall stand cancelled. An SGPA of 8 has to be maintained in the subsequent semesters without any backlog in order to keep the Minors registration active.
- A student shall earn additional 20 credits in the specified area to be eligible for the award of B. Tech degree with Minor. This is in addition to the credits essential for obtaining the Under Graduate Degree in Major Discipline (i.e. 160 credits).
- Out of the 20 Credits, 16 credits shall be earned by undergoing specified courses listed by the concerned BoS along with prerequisites. It is the responsibility of the student to acquire/complete prerequisite before taking the respective course. If a course comes with

a lab component, that component has to be cleared separately. A student shall be permitted to choose only those courses that he/she has not studied in any form during the Programme.

- In addition to the 16 credits, students must pursue at least 2 courses through MOOCs. The courses must be of minimum 8 weeks in duration. Attendance will not be monitored for MOOC courses. Student has to acquire a certificate from the agencies approved by the BOS with grading or marks or pass/fail in order to earn 4 credits. If the MOOC course is a pass/fail course without any grades, the grade to be assigned as decided by the university/academic council.
- Student can opt for the Industry relevant minor specialization as approved by the concerned departmental BoS. Student can opt the courses from Skill Development Corporation (APSSDC) or can opt the courses from an external agency recommended and approved by concerned BOS and should produce course completion certificate. The Board of studies of the concerned discipline of Engineering shall review such courses being offered by eligible external agencies and prepare a fresh list every year incorporating latest skills based on industrial demand.
- A committee should be formed at the level of College/Universities/department to evaluate the grades/marks given by external agencies to a student which are approved by concerned BoS. Upon completion of courses the departmental committee should convert the obtained grades/marks to the maximum marks assigned to that course. The controller of examinations can take a decision on such conversions and may give appropriate grades.
- If a student drops (or terminated) from the Minor program, they cannot convert the earned credits into free or core electives; they will remain extra. These additional courses will find mention in the transcript (but not in the degree certificate). In such cases, the student may choose between the actual grade or a "pass (P)" grade and also choose to omit the mention of the course as for the following: All the courses done under the dropped Minors will be shown in the transcript.
- In case a student fails to meet the CGPA requirement for B.Tech degree with Minor at any point after registration, he/she will be dropped from the list of students eligible for degree with Minors and they will receive B. Tech degree only. However, such students will receive a separate grade sheet mentioning the additional courses completed by them.
- Minor must be completed simultaneously with a major degree program. A student cannot earn the Minor after he/she has already earned bachelor's degree.

6. Attendance Requirements

- a) A student is eligible to write the University examinations if he acquires a minimum of 40% in each subject and 75% of attendance in aggregate of all the subjects.
- b) Condonation of shortage of attendance in aggregate up to 10% (65% and above, and below 75%) may be granted by the College Academic Committee. However, this condonation concession is applicable only to any two semesters during the entire programme.
- c) Shortage of Attendance below 65% in aggregate shall not be condoned.
- d) A student who is short of attendance in a semester may seek re-admission into that semester when offered within 4 weeks from the date of commencement of class work.
- e) Students whose shortage of attendance is not condoned in any semester are not eligible to write their end semester examination of that class.
- f) A stipulated fee of Rs. 500/- in the concerned semester shall be payable towards condonation of shortage of attendance. Students availing condonation on medical ground shall produce a medical certificate issued by the competitive authority.

- g) A student will be promoted to the next semester if he satisfies the (i) attendance requirement of the present semester and (ii) minimum required credits.
- h) If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.
- i) For induction programme attendance shall be maintained as per AICTE norms.
- j) For non-credit mandatory courses the students shall maintain the attendance similar to credit courses

7. Evaluation-Distribution and Weightage of marks

- i. Paper setting and evaluation of the answer scripts shall be done as per the procedures laid down by the University Examination section from time to time.
- ii. To maintain the quality, external examiners and question paper setters shall be selected from reputed institutes like IISc, IITs, IIITs, IISERs, NITs and Universities.
- iii. For non-credit mandatory courses, like Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge, the student has to secure 40% of the marks allotted in the internal evaluation for passing the course. No marks or letter grade shall be allotted for all mandatory non-credit courses.
- iv. A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/practical design/drawing subject/ project etc by securing not less than 35% of marks in the end semester exam and minimum 40% of marks in the sum total of the internal marks and end semester examination marks together.

S.No	Components	Internal	External	Total
1	Theory	30	70	100
2	Engineering Graphics/Design/Drawing	30	70	100
3	Practical	15	35	50
4	Mini Project/Internship/Industrial Training/ Skill Development programs/Research Project	-	50	50
5	Project Work	60	140	200

v. **Distribution and Weightage of marks:** The assessment of the student's performance in each course will be as per the details given:

vi. Continuous Internal Theory Evaluation:

- a) For theory subjects, during a semester, there shall be two mid-term examinations. Each mid-term examination consists of (i) one online objective examination (20 multiple choice questions) for 10 marks for a duration of 20 minutes (ii) one descriptive examination (3 full questions for 5 marks each) for 15 marks for a duration of 90 minutes and (iii) one assignment for 05 marks. All the internal exams shall be conducted as per university norms from first 50% of the syllabi.
- b) In the similar lines, the second online, descriptive examinations assignment shall be conducted on the rest of the 50% syllabus.
- c) The total marks secured by the student in each mid-term examination are evaluated for 30 marks. The first mid marks (Mid-1) consisting of marks of online objective examination, descriptive examination and assignment shall be submitted to the University examination section within one week after completion of first mid examination.
- d) The mid marks submitted to the University examination section shall be displayed in the concerned college notice boards for the benefit of the students.
- e) If any discrepancy found in the submitted Mid-1 marks, it shall be brought to the notice of university examination section within one week from the submission.
- f) Second mid marks (Mid-2) consisting of marks of online objective examination,

descriptive examination and assignment shall also be submitted to University examination section within one week after completion of second mid examination and it shall be displayed in the notice boards. If any discrepancy found in the submitted mid-2 marks, it shall be brought to the notice of university examination section within one week from the submission.

- g) Internal marks can be calculated with 80% weightage for better of the two mids and 20% Weightage for other mid exam.
 - a. Example: **Mid-1 marks** = Marks secured in
 - b. (Online examination-1 + descriptive examination-1 +one assignment-1)
 - c. Mid-2 marks = Marks secured in
 - d. (Online examination-2+descriptive examination-2+one assignment-2)
 - e. **Final internal Marks** = (Best of (Mid-1/Mid-2) marks x 0.8 + Least of (Mid-1/Mid-2) marks x 0.2)
- h) With the above criteria, university examination section will send mid marks of all subjects in consolidated form to all the concerned colleges and same shall be displayed in the concerned college notice boards. If any discrepancy found, it shall be brought to the notice of university examination section through proper channel within one week with all proofs. Discrepancies brought after the given deadline will not be entertained under any circumstances.

vii. Semester End Theory Examinations Evaluation:

- a) The semester end examinations will be conducted university examination section for 70 marks consists of five questions carrying 14 marks each. Each of these questions is from one unit and may contain sub-questions. For each question there will be an "either" "or" choice, which means that there will be two questions from each unit and the student should answer either of the two questions.
- b) For practical subjects there shall be continuous evaluation during the semester for 15 internal marks and 35 end examination marks. The internal 15 marks shall be awarded as follows: day to day work 5 marks, Record-5 marks and the remaining 5 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the teacher concerned and external examiner appointed.
- c) For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 30 marks for internal evaluation (15 marks for continuous Assessment (day-to-day work) and 15 marks for internal tests) and 70 marks for end examination. There shall be two internal tests in a Semester for 15 marks each and final marks can be calculated with 80% weightage for better of the two tests and 20% weightage for other test and these are to be added to the marks obtained in day to day work.

Evaluation of the summer internships:

- Two summer internships each with a minimum of six weeks duration, done at the end of second and third years, respectively are mandatory. The internship can be done by the students at local industries, Govt. Organizations, construction agencies, Industries, Hydel and thermal power projects and also in software MNCs.
- Evaluation of the summer internships shall be through the departmental committee. A student will be required to submit a summer internship report to the concerned department and appear for an oral presentation before the departmental committee. The report and the oral presentation shall carry 40% and 60% weightages respectively.
- In the final semester, the student should mandatorily undergo internship and parallelly he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and

a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner

- The College shall facilitate and monitor the student internship programs. Completion of internships is mandatory, if any student fails to complete internship, he/she will not be eligible for the award of degree. In such cases, the student shall repeat and complete the internship.
- It shall be evaluated for 50 external marks at the end of the semester. There shall be no internal marks for Summer Internship. A student shall secure minimum 40% of marks for successful completion.
- d) Curricular Framework for Skill oriented :
 - The job oriented skill courses may be registered at the college or at any accredited external agency. A student shall submit a record/report on the on the list skills learned. If the student completes job oriented skill course at external agency, a certificate from the agency shall be included in the report. The course will be evaluated at the end of the semester for 50 marks (record: 15 marks and viva-voce: 35 marks) along with laboratory end examinations in the presence of external and internal examiner (course instructor or mentor). There are no internal marks for the job oriented skill courses.
- For skill oriented/skill advanced course, one theory and 2 practical hours or two theory hours may be allotted as per the decision of concerned BOS.
- Out of the five skill courses two shall be skill-oriented courses from the same domain and shall be completed in second year. Of the remaining 3 skill courses, one shall be necessarily be a soft skill course and the remaining 2 shall be skill-advanced courses either from the same domain or Job oriented skill courses, which can be of inter disciplinary nature.
- A pool of interdisciplinary job-oriented skill courses shall be designed by a common Board of studies by the participating departments/disciplines and the syllabus along with the pre requisites shall be prepared for each of the laboratory infrastructure requirements. The list of such courses shall be included in the curriculum structure of each branch of Engineering, so as to enable the student to choose from the list
- The student shall be given an option to choose either the skill courses being offered by the college or to choose a certificate course being offered by industries/Professional bodies/APSSDC or any other accredited bodies as approved by the concerned BoS
- The Board of studies of the concerned discipline of Engineering shall review the skill advanced courses being offered by eligible external agencies and prepare a fresh list every year incorporating latest courses based on industrial demand
- If a student chooses to take a Certificate Course offered by industries/Professional bodies/APSSDC or any other accredited bodies, in lieu of the skill advanced course offered by the Department, the credits shall be awarded to the student upon producing the Course Completion Certificate from the agency/professional bodies as approved by the Board of studies.
- If a student prefers to take a certificate course offered by external agency, the department shall mark attendance of the student for the remaining courses in that semester excluding the skill course in all the calculations of mandatory attendance requirements upon producing a valid certificate as approved by the concerned Board of Studies, the student is deemed to have fulfilled the attendance requirement of the course and acquire the credits assigned to the course.
- A committee shall be formed at the level of the college to evaluate the grades/marks

given for a course by external agencies and convert to the equivalent marks/grades. The recommended conversions and appropriate grades/marks are to be approved by the University/Academic Council.

e)Mandatory Course (M.C): Environmental Sciences, Universal Human Values, Ethics, Indian Constitution, Essence of Indian Traditional Knowledge etc non-credit (zero credits) mandatory courses. Environmental Sciences shall be offered compulsorily as mandatory course for all branches. A minimum of 75% attendance is mandatory in these subjects. There shall be an external examination for 70 marks and it shall be conducted by the college internally. Two internal examinations shall be conducted for 30 marks and a student has to secure at least 40% of the marks for passing the course. There is no online internal exam for mandatory courses. No marks or letter grade shall be printed in the transcripts for all mandatory non-credit courses, but only Completed (Y)/Not-completed (N) will be specified.

- f) Procedure for Conduct and Evaluation of MOOC: There shall be a Discipline Centric Elective Course through Massive Open Online Course (MOOC) as Program Elective course. The student shall register for the course (Minimum of 12 weeks) offered by SWAYAM/NPTEL through online with the approval of Head of the Department. The Head of the Department shall appoint one mentor for each of the MOOC subjects offered. The student needs to register the course in the SWAYAM/NPTEL portal. During the course, the mentor monitors the student's assignment submissions given by SWAYAM/NPTEL. The student needs to submit all the assignments given and needs to take final exam at the proctor center. The student needs to earn a certificate by passing the exam. The student will be awarded the credits given in curriculum only by submission of the certificate. In case if student does not pass subjects registered again through SWAYAM/NPTEL in the next semester with the recommendation of HOD and shall be pass.
- g) Major Project (Project Project work, seminar and internship in industry):
- In the final semester, the student should mandatorily register and undergo internship and in parallel he/she should work on a project with well-defined objectives. At the end of the semester the candidate shall submit an internship completion certificate and a project report. A student shall also be permitted to submit project report on the work carried out during the internship. The project report shall be evaluated with an external examiner.
- *Evaluation:* The total marks for project work 200 marks and distribution shall be 60 marks for internal and 140 marks for external evaluation. The supervisor assesses the student for 30 marks (Report: 15 marks, Seminar: 15 marks). At the end of the semester, all projects shall be showcased at the department for the benefit of all students and staff and the same is to be evaluated by the departmental Project Review Committee consisting of supervisor, a senior faculty and HOD for 30 marks. The external evaluation of Project Work is a Viva-Voce Examination conducted in the presence of internal examiner and external examiner and is evaluated for 140 marks.

8 **Results Declaration:**

- i. Before results declaration, an academic council meeting shall be conducted and results shall be placed before the academic council for approval.
- ii. With the approval of academic council, the results shall be submitted to the University to get the Approval from Honorable Vice-Chancellor.
- iii. The University may normalize the result, if required, before declaration of the result (Guidelines for normalization will be provided separately)
- iv. A copy of approved results in a CD shall be submitted to the University examination

Center.

- 9. Academic Audit: Academic audit in each semester will be conducted as per norms.
- **10. Recounting or Re-evaluation of Marks in the End Semester Examination:** A student can request for recounting of revaluation of his/her answer book on payment of a prescribed fee as per norms.
- **11. Supplementary Examinations:** A student who has failed to secure the required credits can appear for a supplementary examination, as per the schedule announced by the University.
- **12. Malpractices in Examinations:** Disciplinary action shall be taken in case of malpractices during Mid/End examinations as per the rules framed by the University.
- **13. Promotion Rules:** The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in <u>item no.5 for</u> promotion to higher classes

a) A student shall be promoted from first year to second year if he fulfills the minimum attendance requirement as per University norm.

b) A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of credits up to either II year I-Semester or II year II-Semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.

c) A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

14. Course Pattern

a) The entire course of study is for four academic years; all years are on semester pattern.

b) A student eligible to appear for the end semester examination in a subject, but absent from it or has failed in the end semester examination, may write the exam in that subject when conducted next.

c) When a student is detained for lack of credits / shortage of attendance, he may be re-admitted into the same semester/year in which he has been detained. However, the academic regulations under which he was first admitted shall continue to be applicable to him.

15. Earning of Credit:

A student shall be considered to have completed a course successfully and earned the credits if he/she secures an acceptable letter grade in the range A+ to E as given below. Letter grade 'F' in any course implies failure of the student in that course and no credits earned. Absent is also treated as no credits earned. For project same % percentages will be followed for grading.

Marks Range Max:100	Marks range Max:50	Level	Letter Grade	Grade point
≥ 90	\geq 45	Outstanding	A+	10
\geq 80 to <89	$39 \geq 40 \text{ to } <44 \text{Excellent}$		А	9
≥70 to <79	≥35 to <39	Very Good	В	8
≥60 to <69	≥ 30 to < 34	Good	C	7
\geq 50 to <59	≥ 25 to ≤ 29	Fair	D	6
≥40 to <49	≥ 20 to ≤ 24	Satisfactory	E	5
<40	<20	Fail	F	0
-		Absent	AB	0

16. Award of Class:

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the

Class Awarded CGPA to be secured		Remarks
First Class with Distinction	≥7.75 (Without any supplementary appearance)	From the
First Class	≥ 6.75	secured
Second Class	\geq 5.75 to < 6.75	from
Pass Class	\geq 5.00 to < 5.75	160 Credits

following four classes:

17. Minimum Instruction Days:

The minimum instruction days for each semester shall be 90 working days. There shall be no branch transfers after the completion of the admission process. There shall be no transfer from one college/stream to another within the Constituent Colleges and Units of Jawaharlal Nehru Technological University Kakinada.

18. Withholding of Results:

If the student is involved in indiscipline/malpractices/court cases, the result of the student will be withheld.

19. Transitory Regulations

a) Discontinued or detained candidates are eligible for re-admission as and when next offered.

b) The re-admitted candidate will be governed by the rules & regulations under which the candidate has been admitted.

c) In case of transferred students from other Universities, credits shall be transferred to JNTUK as per the academic regulations and course structure of JNTUK.

d) The students seeking transfer to colleges affiliated to JNTUK from various other Universities / Institutions haveto obtain the credits of any equivalent subjects as prescribed by JNTUK. In addition, the transferred candidates have to pass the failed subjects at the earlier Institute with already obtained internal/sessional marks to be conducted by JNTUK.

20. Gap – Year:

Gap Year concept of Student Entrepreneur in Residence shall be introduced and outstanding students who wish to pursue entrepreneurship are allowed to take a break of one year at any time after I/II/III year to pursue entrepreneurship full time. This period shall be counted for the maximum time for graduation. An evaluation committee at university level shall be constituted to evaluate the proposal submitted by the student and the committee shall decide on permitting the student for availing the Gap Year.

21. General:

a) Wherever the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".

b) The academic regulation should be read as a whole for the purpose of any interpretation.

c) In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.

d) The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.

ACADEMIC REGULATIONS (SITE21) FOR B.Tech (LATERAL ENTRY SCHEME)

Applicable for the students admitted into II year B. Tech. from the Academic Year 2022-23 onwards

1. Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfills the following academic regulations:

a) A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than three academic years and not more than six academic years. After six academic years from the year of their admission, he/she shall forfeit their seat in B. Tech course and their admission stands cancelled.

b) The candidate shall register for 122 credits and secure all the 122 credits.

- 2. The attendance regulations of B. Tech. (Regular) shall be applicable to B.Tech (lateral entry)
- 3. **Promotion Rules:** A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.

A student shall be promoted from III year to IV year if he fulfills the academic requirements of 40% of the credits up to either III year I semester or III year II semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

4. Award of Class

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	CGPA to be secured	Remarks
First Class with Distinction	≥ 7.75 (Without any supplementary appearance)	From the CGPA secured from
First Class	\geq 6.75	Year
Second Class	\geq 5.75 to < 6.75	
Pass Class	\geq 5.00 to < 5.75	

The Grades secured, Grade points and Credits obtained will be shown separately in the memorandum of marks.

5. All the other regulations as applicable to **B. Tech. 4-year degree course (Regular) will hold** good for **B. Tech. (Lateral Entry Scheme**

COMMUNITY SERVICE PROJECT

Introduction

1. Community Service Project is an experiential learning strategy that integrates meaningful community service with instruction, participation, learning and community development

2. Community Service Project involves students in community development and service activities and applies the experience to personal and academic development.

3. Community Service Project is meant to link the community with the college for mutual benefit. The community will be benefited with the focused contribution of the college students for the village/ local development. The college finds an opportunity to develop social sensibility and responsibility among students and also emerge as a socially responsible institution. *Objective*

Community Service Project should be an integral part of the curriculum, as an alternative

to the 2 months of Summer Internships / Apprenticeships / On the Job Training, whenever there is an exigency when students cannot pursue their summer internships. The specific objectives are;

1. To sensitize the students to the living conditions of the people who are around them,

2. To help students to realize the stark realities of the society.

3. To bring about an attitudinal change in the students and help them to develop societal consciousness, sensibility, responsibility and accountability

4. To make students aware of their inner strength and help them to find new /out of box solutions to the social problems.

5. To make students socially responsible citizens who are sensitive to the needs of the disadvantaged sections.

6. To help students to initiate developmental activities in the community in coordination with public and government authorities.

7. To develop a holistic life perspective among the students by making them study culture, traditions, habits, lifestyles, resource utilization, wastages and its management, social problems, public administration system and the roles and responsibilities of different persons across different social systems.

Implementation of Community Service Project

1. Every student should put in a minimum of **180 hours** for the Community Service Project during the summer vacation

2. Each class/section should be assigned with a mentor.

3. Specific Departments could concentrate on their major areas of concern. For example, Dept. of Computer Science can take up activities related to Computer Literacy to different sections of people like - youth, women, house-wives, etc.

4. A log book has to be maintained by each of the student, where the activities undertaken/involved to be recorded. The log book has to be countersigned by the concerned mentor/faculty in charge.

5. Evaluation to be done based on the active participation of the student and grade could be awarded by the mentor/faculty member.

6. The final evaluation to be reflected in the grade memo of the student.

7. The Community Service Project should be different from the regular programs of NSS/NCC/Green Corps/Red Ribbon Club, etc.

8. Minor project report should be submitted by each student. An internal Viva shall also be conducted by a committee constituted by the principal of the college.

9. Award of marks shall be made as per the guidelines of Internship/apprentice/ on the job training

Procedure

1. A group of students or even a single student could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay, so as to enable them to commute from their residence and return back by evening or so.

2. The Community Service Project is a twofold one -

a) First, the student/s could conduct a survey of the habitation, if necessary, in terms of their own domain or subject area. Or it can even be a general survey, incorporating all the different areas. A common survey format could be designed. This should not be viewed as a duplication of work by the Village or Ward volunteers, rather, it could be another primary source of data. b) Secondly, the student/s could take up a social activity, concerning their domain or subject area. The different areas, could be like –

Agriculture

- Health
- Marketing and Cooperation
- Animal Husbandry

- Horticulture
- Fisheries
- Sericulture
- Revenue and Survey
- Natural Disaster Management
- Irrigation
- Law & Order
- Excise and Prohibition
- Mines and Geology
- Energy
- Internet
- Free Electricity
- Drinking Water

EXPECTED OUTCOMES BENEFITS OF COMMUNITY SERVICE PROJECT TO STUDENTS

Learning Outcomes

1. Positive impact on students' academic learning.

2. Improves students' ability to apply what they have learned in "the real world".

3. Positive impact on academic outcomes such as demonstrated complexity of understanding, problem analysis, problem-solving, critical thinking, and cognitive development.

4. Improved ability to understand complexity and ambiguity.

Personal Outcomes

1. Greater sense of personal efficacy, personal identity, spiritual growth, and moral development.

2. Greater interpersonal development, particularly the ability to work well with others, and build leadership and communication skills

Social Outcomes

- 1. Reduced stereotypes and greater inter-cultural understanding
- 2. Improved social responsibility and citizenship skills
- 3. Greater involvement in community service after graduation

Career Development

1. Connections with professionals and community members for learning and career opportunities

2. Greater academic learning, leadership skills, and personal efficacy can lead to greater opportunity

Relationship with the Institution

- 1. Stronger relationships with faculty
- 2. Greater satisfaction with college
- 3. Improved graduation rates

BENEFITS OF COMMUNITY SERVICE PROJECT TO FACULTY MEMBERS

1. Satisfaction with the quality of student learning

2. New avenues for research and publication via new relationships between faculty and community

3. Providing networking opportunities with engaged faculty in other disciplines or institutions

4. A stronger commitment to one's research

BENEFITS OF COMMUNITY SERVICE PROJECT TO COLLEGES AND UNIVERSITIES

- 1. Improved institutional commitment
- 2. Improved student retention
- 3. Enhanced community relations

BENEFITS OF COMMUNITY SERVICE PROJECT TO COMMUNITY

1. Satisfaction with student participation

- 2. Valuable human resources needed to achieve community goals
- 3. New energy, enthusiasm and perspectives applied to community work
- 4. Enhanced community-university relations.

SUGGESTIVE LIST OF PROGRAMMES UNDER COMMUNITY SERVICE PROJECT

The following the recommended list of projects for engineering students. The lists are not exhaustive and open for additions, deletions and modifications. Colleges are expected to focus on specific local issues for this kind of projects. The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a group of students should take the responsibility of motivating, facilitating, and guiding the students. They have to interact with local leadership and people and appraise the objectives and benefits of this kind of projects. The project reports shall be placed in the college website for reference. Systematic, Factual, methodical and honest reporting shall be ensured.

For Engineering Students

- 1. Water facilities and drinking water availability
- 2. Health and hygiene
- 3. Stress levels and coping mechanisms
- 4. Health intervention programs
- 5. Horticulture
- 6. Herbal plants
- 7. Botanical survey
- 8. Zoological survey
- 9. Marine products
- 10. Aqua culture
- 11. Inland fisheries
- 12. Animals and species
- 13. Nutrition
- 14. Traditional health care methods
- 15. Food habits
- 16. Air pollution
- 17. Water pollution
- 18. Plantation
- 19. Soil protection
- 20. Renewable energy
- 21. Plant diseases
- 22. Yoga awareness and practice
- 23. Health care awareness programs and their impact
- 24. Use of chemicals on fruits and vegetables
- 25. Organic farming
- 26. Crop rotation
- 27. Floury culture
- 28. Access to safe drinking water
- 29. Geographical survey
- 30. Geological survey
- 31. Sericulture
- 32. Study of species
- 33. Food adulteration
- 34. Incidence of Diabetes and other chronic diseases
- 35. Human genetics
- 36. Blood groups and blood levels
- 37. Internet Usage in Villages
- 38. Android Phone usage by different people

39. Utilization of free electricity to farmers and related issues

40. Gender ration in schooling level- observation.

Complementing the community service project, the students may be involved to take up some awareness campaigns on social issues/special groups. The suggested list of programs are;

Programs for School Children:

- 1. Reading Skill Programme (Reading Competition)
- 2. Preparation of Study Materials for the next class.
- 3. Personality / Leadership Development
- 4. Career Guidance for X class students
- 5. Screening Documentary and other educational films
- 6. Awareness Programme on Good Touch and Bad Touch (Sexual abuse)
- 7. Awareness Programme on Socially relevant themes.

Programs for Women Empowerment

- 1. Government Guidelines and Policy Guidelines
- 2. Women's' Rights
- 3. Domestic Violence
- 4. Prevention and Control of Cancer
- 5. Promotion of Social Entrepreneurship

General Camps

- 1. General Medical camps
- 2. Eye Camps
- 3. Dental Camps
- 4. Importance of protected drinking water
- 5. ODF awareness camp
- 6. Swatch Bharat
- 7. AIDS awareness camp
- 8. Anti-Plastic Awareness
- 9. Programs on Environment
- 10. Health and Hygiene
- 11. Hand wash programs
- 12. Commemoration and Celebration of important days

Programs for Youth Empowerment

- 1. Leadership
- 2. Anti-alcoholism and Drug addiction
- 3. Anti-tobacco
- 4. Awareness on Competitive Examinations
- 5. Personality Development

Common Programs

- 1. Awareness on RTI
- 2. Health intervention programs
- 3. Yoga
- 4. Tree plantation
- 5. Programs in consonance with the Govt. Departments like
 - i. Agriculture
 - ii. Health
 - iii. Marketing and Cooperation
 - iv. Animal Husbandry
 - v. Horticulture
 - vi. Fisheries
 - vii. Sericulture
 - viii. Revenue and Survey
 - ix. Natural Disaster Management
 - x. Irrigation
 - xi. Law & Order
 - xii. Excise and Prohibition
 - xiii. Mines and Geology
 - xiv. Energy

Role of Students:

- 1. Students may not have the expertise to conduct all the programmes on their own. The students thencan play a facilitator role.
- 2. For conducting special camps like Health related, they will be coordinating with the Governmental agencies.
- 3. As and when required the College faculty themselves act as Resource Persons.

4. Students can work in close association with Non-Governmental Organizations like Lions Club, Rotary Club, etc or with any NGO actively working in that habitation.

- 5. And also, with the Governmental Departments. If the programme is rolled out, the District Administration could be roped in for the successful deployment of the programme.
- 6. An in-house training and induction programme could be arranged for the faculty and participating students, to expose them to the methodology of Service Learning.

Timeline for the Community Service Project Activity

Duration: 8 weeks

1. Preliminary Survey (One Week)

a) A preliminary survey including the socio-economic conditions of the allotted habitation to be conducted.

b) A survey form based on the type of habitation to be prepared before visiting the habitation with the help of social sciences faculty. (However, a template could be designed for different habitations, rural/urban.

c) The Governmental agencies, like revenue administration, corporation and municipal authorities and village secretariats could be aligned for the survey.

2. Community Awareness Campaigns (Two Weeks)

Based on the survey and the specific requirements of the habitation, different awareness

campaigns and programmes to be conducted, spread over two weeks of time. The list of activities suggested could be taken into consideration.

3. Community Immersion Programme (Four Weeks)

Along with the Community Awareness Programmes, the student batch can also work with any one of the below listed governmental agencies and work in tandem with them. This community involvement programme will involve the students in exposing themselves to the experiential learning about the community and its dynamics. Programmes could be in consonance with the Govt. Departments.

4. Community Exit Report (One Week)

During the last week of the Community Service Project, a detailed report of the outcome of the 8 weeks works to be drafted and a copy shall be submitted to the local administration. This report will be a basis for the next batch of students visiting that particular habitation. The same report submitted to the teacher-mentor will be evaluated by the mentor and suitable marks are awarded for onward submission to the University.

Throughout the Community Service Project, a daily log-book need to be maintained by the students batch, which should be countersigned by the governmental agency representative and the teacher-mentor, who is required to periodically visit the students and guide them.

Course Numbering Scheme

The Course number code consists of 11alphabets. A typical course number code is illustrated in the followingFigure-1.

Mechanical Engineering (ME)

Figure 1: Course Numbering Scheme

The department codes are in given in following table 1.

Department	Two-character code
Artificial Intelligence and Machine Learning	AM
Civil Engineering	CE
Electrical & Electronics Engineering	EE
Mechanical Engineering	ME
Electronics & Communications Engineering	EC
Electronics & Communications Technology	ET

Table 1: Department Codes

Computer Science and Engineering	CS
Computer Science and Technology	СТ
Information Technology	IT
Management Science	MS
Mathematics	МА
Physics	PH
Chemistry	СН
English	EG
Biology	BI
Common to All Branches	СМ

Example: Foundations of AI in 3rd semester for AI&ML with S. No 2 can be given as

Course Code: 21AMAMT3020 **Table 2: Comparison of Number of credits given by AICTE and Approved credits**

						No. of	Credits			
v		ECE	C/ECT]	EEE	CSE	/IT/CST		ME	
	AICTE	APSCHE	Approved	AICTE	Approved	AICTE	Approved	AICTE	Approved	AIC
es al	12	7	7.5	12	11	12	11	12	11	12
	25	18	21	26	25	24	26	25	26	20
ng	24	22.5	19.5	20	20	29	29.5	24	23	29
al ses	48	55.5	55.5	53	62	49	48.5	48	55	4′
al	18	15	15	18	15	18	18	18	18	23
	18	15	15	18	12	12	12	18	12	1
ork r p	15	26.5	26.5	11	15	15	15	15	15	12
у	-		-	-	-	_	-	_	-	-
	160	160	160	158	160	159	160	160	160	16

Malpractice DISCIPLINARY ACTION FOR MALPRACTICES/IMPROPER CONDUCT IN EXAMS

S.	Nature of Malpractices/Improper	Punishment
No.	conduct	
	If the candidate:	
1. (a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
1. (b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year.The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that

		semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in
		connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.
4.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6.	Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.

	act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.

		Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.	

MALPRACTICES

- The Principal shall refer the cases of malpractices in Continuous Evaluation and Semester-End Examinations, to Malpractice Enquiry Committee, constituted by him/her for the purpose. Such committee shall follow the approved scales of punishment. The Principal shall take necessary action, against the erring students based on the recommendations of the committee.
- Any action on the part of student at an examination trying to get undue advantage in the performance or trying to help another, or derive the same through unfair means is punishable according to the provisions contained hereunder. The involvement of the Staff, who are in charge of conducting examinations, valuing examination papers and preparing/keeping records of documents relating to the examinations in such acts (inclusive of providing incorrect or misleading information) that infringe upon the course of natural justice to one and all concerned at the examination shall be viewed seriously and recommended for award of appropriate punishment after thorough enquiry.

Ragging

Prohibition of ragging in educational institutions Act 26 of 1997 Salient Features

• Ragging within or outside any educational institution is prohibited.

• Ragging means doing an act which causes or is likely to cause Insult or Annoyance of Fear or Apprehension or Threat or Intimidation or outrage of modesty or Injury to a student.

Causing death or abetting suicide

In Case of Emergency call Toll Free Number : 1800-425-1288

LET US MAKE SITE RAGGING FREE INSTITUTE

Program Outcomes for an Engineering Graduates:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE STRUCTURE AND DETAILED SYLLABUS

for

B.Tech. in

Artificial Intelligence and Machine Learning

Effective from the academic year 2021-22

	I-I	I-II	II-I	II-	III-	III-	IV-	IV-	
				II	Ι	II	Ι	II	
Humanities and Social Sciences	4.5				3.0		3.0		10.5
(HSS)									
Basic Science courses (BS)	3.0	12.0	3.0	3.0					21.0
Engineering Science courses (ES)	12.0	7.5		4.5					24.0
Professional Core courses (PC)			16.5	12.0	9.0	13.5			51.0
Professional Elective Courses (PE)					3.0	3.0	9.0		15.0
Open elective courses (OE)					3.0	3.0	6.0		12.0
Skill Oriented Course (SOC)			2.0	2.0	2.0	2.0	2.0		10.0
Summer Internship (SI)					1.5		3.0		4.5
Project work								12	12.0
Mandatory Course (MC)	0	0	0	-	0	-	-	-	0
	19.5	19.5	21.5	21.5	21.5	21.5	23.0	12.0	160

Credit Distribution	for	B.Tech.	AIML	Program

Credit Comparison with AICTE and APSHE

		No. of Credits				
S.No.	Category	Suggested by AICTE	Suggested by APSCHE	Proposed		
1	Humanities and Social Sciences (HSS)	12	7	10.5		
2	Basic Science courses (BS)	25	18	21		
3	Engineering Science courses (ES)	24	22.5	24		
4	Professional Core courses (PC)	48	55.5	51		
5	Professional Elective Courses (PE)	18	15	15		
6	Open elective courses (OE)	18	15	12		
7	Skill Oriented Course (SOC)	-	10	10		
8	Summer Internship (SI)	15	4.5	4.5		
9	Project work	15	12	12		
10	Mandatory Course (MC)	-	-	-		
	Total Credits	160	160	160		

	Course Structure for I B. Tech AIML Under the Regulations of SITE-21								
	Semester -I								
S No	Course	Subject	Course	т	т	D	C		
5.110	Code	Code	Course	L	1	Г	C		
1	HS	21CMMAT1010	Engineering Mathematics – I	3	0	0	3		
2	BS	21AMPHT1020	Engineering Physics	3	0	0	3		
3	ES	21CMCHT1030	Engineering Chemistry	3	0	0	3		
4	ES	21CMCST1040	Programming for Problem Solving	3	0	0	3		
5	ES	21AMMEL1050	Computer Aided Engineering Graphics	2	0	2	3		
6	HS	21AMPHL1060	Engineering Physics Lab	0	0	3	1.5		
7	ES	21CMCHL1070	Engineering Chemistry Lab	0	0	3	1.5		
8	ES	21CMCSL1080	Programming for Problem Solving Lab	0	0	3	1.5		
9	MC	21CMMSN1090	Constitution of India, Professional Ethics & Human Rights	2	0	0	0		
	TOTAL 16 0 11 19.5								

	Course Structure for I B. Tech AIML Under the Regulations of SITE-21								
	Semester -II								
S No	Course	Subject	Course	T	т	р	С		
5.110	Code	Code	Course	L	1	1	C		
1	BS	21CMEGT2010	Technical English	3	0	0	3		
2	BS	21CMMAT2020	Engineering Mathematics - II	3	0	0	3		
3	BS	21CMEET2030	Basic Electrical Engineering	3	0	0	3		
4	ES	21CMCST2040	Python Programming	1	0	4	3		
5	ES	21AMAMT2050	Data Structures	3	0	0	3		
6	BS	21CMEGL2060	English Communication Skills Lab	0	0	3	1.5		
7	BS	21CMEEL2070	Basic Electrical Engineering Lab	0	0	3	1.5		
8	ES	21AMAML2080	DS Lab	0	0	3	1.5		
9	MC	21CMCHN2090	Environmental Science	2	0	0	0		
	TOTAL 16 0 11 19.5						19.5		

Prop	Proposed Course Structure for II B. Tech AIML Under the Regulations of SITE-21								
	Semester -III								
S.No	Subjec t Code	Course Code	Course	L	Т	Р	С		
1	BS	21AMMAT3010	Probability and statistics	3	0	0	3		
2	PC	21AMAMT3020	Foundations of Artificial Intelligence	3	0	0	3		
3	PC	21AMAMT3030	Database Management Systems	3	0	0	3		
4	PC	21AMAMT3040	Operating Systems	3	0	0	3		
5	PC	21AMAMT3050	Analog & Digital Electronics	3	0	0	3		
6	PC	21AMAMT3060	Artificial Intelligence Lab	0	0	3	1.5		
7	PC	21AMAMT3070	Operating Systems Lab	0	0	3	1.5		
8	PC	21AMAMT3080	Database Management Systems Lab	0	0	3	1.5		
9	SOC	21AMAMC3090	Python for Data Science	1	0	2	2		
10	MC	21AMBIN3100	MC: Biology for Engineers	3	0	0	0		
			TOTAL				21.5		

Sasi Institute of Technology & Engineering

Prop	Proposed Course Structure for II B.Tech AIML Under the Regulations of SITE-21								
	Semester -IV								
S.No	Subjec t Code	Course Code	Course	L	Т	Р	С		
1	BS	21AMMAT401 0	Discrete Mathematics	3	0	0	3		
2	PC	21AMAMT402 0	Introduction to Machine Learning	3	0	0	3		
3	PC	21AMAMT403 0	Design and Analysis of Algorithms	3	0	0	3		
4	ES	21AMAMT404 0	Java Programming	3	0	0	3		
5	PC	21AMAMT405 0	Optimization Techniques for AI	3	0	0	3		
6	PC	21AMAML406 0	Machine Learning Lab	0	0	3	1.5		
7	PC	21AMAML407 0	Design and Analysis of Algorithms Lab	0	0	3	1.5		
8	ES	21AMAML408 0	Java Programming Lab	0	0	3	1.5		
9	SOC	21AMAMC409 0	SOC: Fundamentals of Programming and Simulation using MATLAB for AI	1	0	2	2		
			TOTAL				21.5		
Interns	ship 2 Moi	nths (Mandatory)	during summer vacation						

Prop	Proposed Course Structure for III B.Tech AIML Under the Regulations of SITE-21								
	Semester -V								
S.No	Subjec t Code	Course Code	Course	L	Т	Р	С		
1	HSS	21CMMST5010	Engineering Economics & Financial Management	3	0	0	3		
2	PC	21AMAMT502 0	Computer Networks	3	0	0	3		
3	PC	21AMAMT503 0	Software Engineering	3	0	0	3		
4	PE	21AMAMT504 X	Professional Elective-1	3	0	0	3		
5	OE	21AMXXT5050	Open Elective-1	3	0	0	3		
6	PC	21AMAML506 0	Computer Networks Lab	0	0	3	1.5		
7	PC	21AMAML507 0	Software Engineering Lab	0	0	3	1.5		
8	SOC	21CMAHS5080	Soft Skills & Aptitude builder I	1	0	2	2		
9	MC	21AMAMN509 0	MC: Intellectual Property Rights	2	0	0	0		
10		21AMAMR510 0	Summer Internship (Mandatory) after second year (to be evaluated during V semester	0	0	0	1.5		
			TOTAL				21.5		
Honors also)	s/Minor co	ourses (The hours	distribution can be 3-0-2 or 3-1-0	4	0	0	4		

Professional Electives I

21AMAMT504A	Graph Theory
21AMAMT504B	Web Programming
21AMAMT504C	Computer Vision & Robotics
21AMAMT504D	Computer Graphics

Prop	Proposed Course Structure for III B.Tech AIML Under the Regulations of SITE-21						
			Semester -VI				
S.No	Subjec t Code	Course Code	Course	L	Т	Р	С
1	BS	21AMAMT6010	Deep learning	3	0	0	3
2	BS	21AMAMT6020	Compiler Design	3	0	0	3
3	PC	21AMAMT6030	Data Ware housing and Mining	3	0	0	3
4	PC	21AMAMT604X	Professional Elective -2	3	0	0	3
5	PC	21AMAMT6050	Open Elective -2	3	0	0	3
6	PC	21AMAMT6060	Deep learning Lab	0	0	3	1.5
7	PC	21AMAMT6070	Compiler Design Lab	0	0	3	1.5
8	PC	21AMAMT6080	Data Mining using Python Lab	0	0	3	1.5
9	SOC	21AMAMC6090	Soft Skills & Aptitude builder II	2	0	0	2
10	MC	21AMAMC6100	MC: Essence of Indian Traditional Knowledge	2	0	0	0
			TOTAL				21.5

Professional Electives II

21AMAMT604A	Software Testing
	Methodologies
21AMAMT604B	Information Retrieval Systems
21AMAMT604C	Cryptography and Network
	Security
21AMAMT604D	Pattern Recognition

Proposed Course Structure for IV B.Tech AIML Under the Regulations of SITE-21 Semester -VII

S.No	Subjec t Code	Course Code	Course	L	Т	Р	С
1	PC	21AMAMT701X	Professional Elective -3	3	0	0	3
2	PC	21AMAMT702X	Professional Elective -4	3	0	0	3
3	PC	21AMAMT703X	Professional Elective -5	3	0	0	3
4	PC	21AMXXT704X	Open Elective -3	3	0	0	3
5	PC	21AMXXT705X	Open Elective -4	3	0	0	3
6	HS	21AMAMT7060	Management Science	3	0	0	3
7	SOC	21AMAMT7070	Skill Oriented Course	1	0	2	2
		21AMAMT7080	Industrial/Research Internship 2 Months (Mandatory) after third year (to be evaluated during VII semester	0	0	0	3
	•	•	TOTAL				23

Professional Electives III

21AMAMT701A	Internet of Things
21AMAMT701B	Reinforcement Learning
21AMAMT701C	DevOps
21AMAMT701D	Block Chain Technologies

Professional Electives IV

21AMAMT702A	Robotic Process Automation
21AMAMT702B	Natural Language Processing
21AMAMT702C	Big Data Analytics
21AMAMT702D	Soft Computing

Professional Electives V

21AMAMT703A	Cloud Computing	
21AMAMT703B	Expert Systems	
21AMAMT703C	Data Visualization	
21AMAMT703D	Semantic Web	

Proposed Course Structure for IV B.Tech AIML Under the Regulations of SITE-21 Semester -VIII

S.No	Subjec t Code	Course Code	Course	L	Т	Р	С
1	PC	21AMMAR5010	Project Work	3	0	0	12
			TOTAL				12

Open Electives: (Offered by AI&ML Department for other department students)

V SEM OPEN ELECTIVE -1 COURSES offered by AIML Department

S. No	Subject Code	Name of the subject	L	Т	Р	CREDITS
1.	21XXAMO50XA	Artificial Intelligence	3	0	0	3
2.	21XXAMO50XB	Operating Systems Concepts	3	0	0	3

VI SEM OPEN ELECTIVE-2 COURSES offered by AIML Department

S. No	Subject Code	Name of the subject	L	Т	Р	CREDITS
1.	21XXAMO60XA	Designing Database Management	3	0	0	3
		Systems				
2.	21XXAMO60XB	R Programming	3	0	0	3

VII SEM OPEN ELECTIVE-3 COURSES offered by AIML Department

S. No	Subject Code	Name of the subject	L	Т	Р	CREDITS
1.	21XXAMO70XA	Java Programming	3	0	0	3
2.	21XXAMO70XB	Introduction to Machine Learning	3	0	0	3

VII SEM OPEN ELECTIVE-4 COURSES offered by AIML Department

S. No	Subject Code	Name of the subject	L	Т	Р	CREDITS
1.	21XXAMO70XC	Internet of Things	3	0	0	3
2.	21XXAMO70XD	Optimization Techniques for AI	3	0	0	3

Minor Courses (For other Departments)

Note:

- 1. Any FOUR courses need to be studied from PART-A after their completion of II B. Tech I Sem.
- 2. From Part B, TWO, NPTEL courses of minimum EIGHT-week duration covering a total of 4 credits (offered by AI & ML Department) should be completed, Student can register at any time after the completion of II B.Tech. I Sem.
- 3. Students can pursue suggested MOOC Courses via NPTEL from II B. Tech II Sem and onwards, by prior information to the concern.

PART A

Minor Degree in "Artificial Intelligence and Machine Learning"							
S.No	Course Code	Name of the Course	L	Τ	Р	С	
1	21YYAMMXXXX	Soft Computing	3	1	0	4	
2	21YYAMMXXXX	Introduction to AI & Machine Learning	3	1	0	4	
3	21YYAMMXXXX	Introduction to Data Science	3	1	0	4	
4	21YYAMMXXXX	Deep Learning	3	1	0	4	
5	21YYAMMXXXX	IOT	3	1	0	4	
	Total Credits (Any 4 Courses) 1						

PART B

S.N 0	Name of the MOOC Course	Course Instructor	Links
1	Artificial Intelligence: Search Methods for Problem solving	Prof. Deepak Khemani, IITM	https://onlinecourses.nptel.ac.i n/noc22_cs67/preview
2	Introduction to Machine Learning	Prof. Balaraman Ravindran, IITM	https://onlinecourses.nptel.ac.i n/noc22_cs73/preview
3	Data Science for Engineers	Prof. Ragunathan Rengasamy Prof. Shankar Narasimhan, IITM	https://onlinecourses.nptel.ac.i n/noc22_cs72/preview
4	Machine Learning for Engineering and Science Applications	Dr. Balaji Srinivasan, IIT Madras	https://nptel.ac.in/courses/10 6106198
<u>Course Structure and detailed syllabus for I B. Tech, AI&ML under</u> <u>regulations of SITE-21</u>

	Course Structure for I B. Tech AIML Under the Regulations of SITE-21										
			Semester -I								
S No	Course	Subject	Course	т	т	D	C				
5.110	Code	Code	Course	L	1	Г	C				
1	HS	21CMMAT1010	Engineering Mathematics – I	3	0	0	3				
2	BS	21AMPHT1020	Engineering Physics	3	0	0	3				
3	ES	21CMCHT1030	Engineering Chemistry	3	0	0	3				
4	ES	21CMCST1040	Programming for Problem Solving	3	0	0	3				
5	ES	21AMMEL1050	Computer Aided Engineering Graphics	2	0	2	3				
6	HS	21AMPHL1060	Engineering Physics Lab	0	0	3	1.5				
7	ES	21CMCHL1070	Engineering Chemistry Lab	0	0	3	1.5				
8	ES	21CMCSL1080	Programming for Problem Solving Lab	0	0	3	1.5				
9	MC	21CMMSN1090	Constitution of India, Professional Ethics & Human Rights	2	0	0	0				
		T	DTAL	16	0	11	19.5				

	Course	Structure for I H	B. Tech AIML Under the Regulations of	of SI'	ТЕ-	21	
			Semester -II				
S.N	Cours e	Subject	Course	L	Т	Р	С
0	Code	Code					
1	BS	21CMEGT2010	Technical English	3	0	0	3
2	BS	21CMMAT2020	Engineering Mathematics - II	3	0	0	3
3	BS	21CMEET2030	Basic Electrical Engineering	3	0	0	3
4	ES	21CMCST2040	Python Programming	1	0	4	3
5	ES	21AMAMT205 0	Data Structures	3	0	0	3
6	BS	21CMEGL2060	English Communication Skills Lab	0	0	3	1.5
7	BS	21CMEEL2070	Basic Electrical Engineering Lab	0	0	3	1.5
8	ES	21AMAM2080	DS Lab	0	0	3	1.5
9	MC	Environmental Science	2	0	0	0	
		16	0	11	19. 5		

ENGINEERING MATHEMATICS-I (Calculus & Differential Equations) (Syllabus for the academic year 2021 -2022) Common to all the branches Semester I/II								
Subject Code	21CMMAT1010	IA Marks	30					
Number of Lecture Hours/Week	3	Exam Marks	70					
Total Number of Lecture Hours	50	Exam Hours	03					
· · · · ·	Credits – 03		•					
Course Objectives: 1. To solve the differential equations related to various engineering fields 2. To enlighten the learners in the concept of differential equations. 3. To familiarize with functions of several variables which is useful in optimization 4. To solve the partial partial differential equations of first order 5. To apply double integration techniques in evaluating areas bounded by region. Unit -1 Differential Equations of first order and first degree: Linear differential equations - Bernoulli's equations – Exact equations and Equations reducible to exact form. Applications: Newton's law of cooling - Law of natural growth and decay - Orthogonal								
Linear differential equations of higher homogeneous differential equations of higher with non-homogeneous term of the type of $V(x)$ and $x^n V(x)$ – Method of Variation of Applications: LCR circuit.	er order: Homogeneo gher order with consta a ^{ax} , sin ax, cos ax, poly of parameters.	us and Non- nt coefficients – nomials in x ⁿ , e ^{ax}	Hours – 10					
Partial differentiation: Introduction – Homogeneous function – I Chain rule– Jacobian – Functional dependence expansion of functions of two variables. Applications: Maxima and Minima or constraints and Lagrange's method. Unit – 4	Euler's theorem– Tota dence –Taylor's and M f functions of two	l derivative– lacLaurin's series variables without	Hours – 10					
PDE of first order: Formation of partial differential equations arbitrary functions – Solutions of first nonlinear (standard types) equations. Unit – 5	by elimination of arbi	trary constants and age) equation and	Hours – 08					
Multiple integrals: Double and Triple inte double integrals – Change of variables to p Applications: Finding Areas and Volumes.	grals – Change of order olar, cylindrical and spl	of integration in nerical coordinates.	Hours – 12					
 On completion of this course, students a 1. Solve the differential equations a 2. Solve the differential equations a (L3) 3. familiarize with functions of sev 4. Solve the partial partial differential 5. Apply double integration technic 	are able to related to various eng of higher order related veral variables which tial equations of first iques in evaluating ar	ineering fields (L3) d to various engine is useful in optimiz order (L3) eas bounded by reg) ering fields eation (L3) gion (L3).					

Question paper pattern:

- 1. Question paper consists of 10 questions.
- 2. Each full question carrying 14 marks.
- 3. Each full question will have sub question covering all topics under a unit.
- 4. The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- 2. B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14thEdition, Pearson.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
2	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
5	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
Course	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-

ENC (Semiconductor Phy (Common for	GINEERING PHYSICS vsics & Semiconductor (AI&ML, CSE, CST, E Semester I/II	Dptoelectroni EE & IT)	cs)				
Subject Code	21AMPHT1020 21CTPHT1020 21EEPHT2020 21ITPHT2020	IA Mark	ζ8	30			
Number of Lecture Hours/Week	03	Exam Ma	70				
Total Number of Lecture Hours	50	Exam Ho	urs	03			
	Credits – 03						
 To impart the knowledge of mechanism in solids. To understand the physics of utility. 	students f Quantum mechanics for semiconductors and their	or understand	ing the o	conducting for their			
Unit -1Unit -1Quantum Mechanics: Dual nature of matter, Significance and properties of wave function, Schrodinger time independent wave equations, Particle in a one-dimensional infinite potential well.Hours - 12Free Electron Theory and Band theory: Classical free electron theory (Qualitative with discussion of merits and demerits), Quantum free electron theory, Equation for electrical conductivity based on quantum free electron theory, Fermi-Dirac distribution, Density of states (3D), Fermi energy; Band theory of Solids -Bloch's theorem; Kronig - Penney model (Qualitative), Effective mass of electron.Hours - 12							
Unit -2							
Semiconductors: Introduction; Intrin carriers, Electrical conductivity, Fer density of charge carriers, depend concentration and temperature; Drif equation; Hall effect- Hall coefficient	sity of charge niconductors- on carrier s- Einstein's fect.	Hou	urs – 11				
Unit – 3							
Light interaction with matter: emission, and stimulated emission inversion, Characteristics of lasers, Pr Ne laser, Direct and indirect band gap bulk semiconductors Construction at applications.	Stimulated absorption, a, Einstein coefficients, umping mechanisms- Ru semiconductors, Optical nd working of laser dio	spontaneous Population by laser, He- transitions in de and their	Ηοι	ırs –10			
Unit – 4							

Semiconductor light emitting diodes (LEDs) : Injection Electro						
luminescence: Construction and working of LED, characteristics of LED's						
-Internal efficiency. Extraction efficiency. External Efficiency. Power						
conversion efficiency, Responsivity & I V characteristics, Double junction	Hours – 9					
Hetero structure and its importance, LED configurations-SLED's and						
ELED'S, applications of LEDs.						
Unit – 5						
Photo diodes: Introduction- construction and working principle of PN						
photodiode, P-i-N photodiode, and Avalanche photodiode (APD), and their	II					
IV characteristics, Photovoltaic effect, construction and working of Solar	Hours – ð					
cell, fill factor and efficiency of solar cell.						
COURSE OUTCOMES:						
On completion of the course student will able to						
1. Understand the theoretical view of electrical conductivity in metals	s using free electron					
theory and quantum mechanics.	0					
2. Estimate the statistical calculation and the theoretical view of charge carrier's density in						
semiconductors.						
3. Generalization of the light-matter interaction mechanisms.						
4. Describe the basic laser physics and working of lasers.						
5. Illustrate the construction and working function of LEDs.						
6. Analyze the construction and working of photo diodes and solar cell	s.					
QUESTION PAPER PATTERN:						
1. It will have 5 questions with internal choice.						
2. Each question carries 14 marks.						
Each full question comprises sub questions covering all topics und	der a unit.					
TEXT BOOKS:						
1. S.O. Pillai, Solid state physics, New age publications.						
2. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John W	iley & Sons,					
3. A Text Book of Engineering Physics- M.N.Avadhanulu, 11e, S.CHA	AND,					
REFERENCE BOOKS:						
1. Ch. Srinivas, Ch. Seshubabu, Engineering Physics, Cengage learning	g publications.					
2. P. Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Ha	all of India (1997).					
3. Online course: "Semiconductor Optoelectronics" by M R Shenoy on	NPTEL					
4. Online course: "Optoelectronic Materials and Devices" by Monica K	atiyar and Deepak					
Gupta on NPTEL						

_					-		-			-					
CO	PO	PSO	PSO	PSO											
00	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	-	2	-	-	I	•	-	•	•	•	•	-	-	-
2	3	-	2	1	-	I	•	-	•	•	•	•	-	-	-
3	3	-	2	-	-	I	-	-	•	•	•	•	-	-	-
4	3	-	2	1	-	I	•	-	•	•	•	•	-	-	-
5	3	-	2	1	-	I	•	-	•	•	•	•	-	-	-
6	3	-	2	1	-	-	-	-	-	-	-	-	-	-	-
Course	3	-	2	1	-	I	-	-	-	-	-	-	-	-	-

ENGINEERING CHEMISTRY Semester I/II								
Subject Code	21CMCHT1030	IA Marks		30				
Number of Lecture Hours/Week	3	Exam Marks	5	70				
Total Number of Lecture Hours	48	Exam Hours		03				
	Credits – 03							
 COURSE OBJECTIVES: The objectives of this course, help the students to Explain the mechanism of corrosion Interpret various boiler troubles and importance of water quality standards. Learn preparation of semiconducting materials, nanomaterials and liquid crystals – their applications Acquire knowledge on nonconventional energy resources and different types of batteries Know various spectroscopic techniques. Acquire knowledge on volumetric analysis. 								
Module-1								
Electrochemistry and Corrosion Electro chemistry: Introduction, electric Hydrogen and Calomel electrodes, Nern Corrosion: Introduction, Mechanism methods – proper designing, cathodic impressed current cathodic protection.	rode potential, standard st equation and application of Wet chemical corro protection- Sacrificial	electrodes – ions. sion, control anodic and	Hours –9					
Module -2								
Water Chemistry and Surface Proper Water chemistry: Surface and subs turbidity, pH, total dissolved salts, ch Temporary and Permanent hardness, U complexometric method. Boiler troubles foaming, Boiler corrosion. Break point c Surface properties: Determination of su	Hours	s –9						
Module -3								

Material Chemistry	
Non-elemental semiconducting materials: Stoichiometric, controlled valency and chalcogen photo/semiconductors and preparation of semiconductors (distillation, zone refining, Czochralski crystal pulling, epitaxy, diffusion and ion implantation).	Hours _10
Liquid crystals: Introduction, types and applications.	110013 -10
Nanoparticles : Introduction, preparation methods – Sol-gel method, Chemical reduction method – Preparation of carbon nanotubes (Arc discharge, chemical vapour deposition and laser ablation methods) properties and applications.	
Module – 4	
ENERGY SOURCES:	
Non-conventional energy sources,	
Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell,hydropower, geothermal power, tidal and wave power, ocean thermal energy conversion.	Hours –10
Batteries and fuel cells: Primary and secondary batteries - Dry cell, Lead Acid Cell, Lithium ion battery and Zinc air cells and fuel cells - H ₂ -O ₂ , CH ₃ OH-O ₂ , Phosphoric acid and molten carbonate.	
Module – 5	
SPECTROSCOPY AND CHROMATOGRAPHY TECHNIQUES	
Regions of electromagnetic spectrum - Principles of vibrational and rotational spectroscopy. Vibrational and rotational spectroscopy of diatomic molecules: Rigid diatomic molecules - selection rule - simple Harmonic Oscillator - diatomic vibrating rotator. Nuclear magnetic resonance – Principle and Instrumentation.	Hours –10
Principles of chromatography – Thin Layer & Paper Chromatography.	
COURSE OUTCOMES:	
1. Interpret the mechanism of corrosion	
 Summarize the problems faced in industries due to boiler troubles. Recall the properties and applications of advanced materials 	
 4. Summarize the advantages of non-conventional energy resources and by 	atteries.
 5. Able to gain knowledge on spectroscopic techniques and the ran electromagnetic spectrum used for exciting different molecular energy 1 6. Determine the strength of acid, base and some elements by volu instrumental analysis. 	nges of the levels. umetric and

QUESTION PAPER PATTERN:

All questions should be answered, eachquestion carries 14 marks

TEXT BOOKS:

- 1. P.C. Jain and M. Jain "Engineering Chemistry", 15/e, Dhanpat Rai & Sons, Delhi, (Latest edition).
- 2. Shikha Agarwal, "**Engineering Chemistry**", Cambridge University Press, New Delhi, (2019).
- 3. S.S. Dara, "A Textbook of Engineering Chemistry", S.Chand & Co, (2010).
- 4. Shashi Chawla, "Engineering Chemistry", Dhanpat Rai Publicating Co. (Latest edition).
- 5. Fundamentals of Molecular Spectroscopy, by C. N. Banwell.

REFERENCE BOOKS:

- 1. K. Sesha Maheshwaramma and Mridula Chugh, "**Engineering Chemistry**", Pearson India Edn.
- 2. O.G. Palana, "Engineering Chemistry", Tata McGraw Hill Education Private Limited, (2009).
- 3. CNR Rao and JM Honig (Eds) "**Preparation and characterization of materials**" Academic press, New York (latest edition)

CO	D (1	PO2	DO3	PO4	PO5	POG	D O7	DUB	PO9	PO	РО	РО	PSO	PSO	PSO
co	rui	F02	103	104	105	100	107	100	109	10	11	12	1	2	3
1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
3	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
5	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-
6	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cours e	2	2	1	-	-	-	-	-	-	-	-	-	-	-	-

PROGRAMM	ING FOR PROBLEM SOLVIN	G					
	Semester I/II						
Subject Code	21CMCST1040 L	A Marks	30				
Number of Lecture hours/Week	3 E	Exam Marks	70				
Total Number of Lecture Hours	50 E	Exam Hours	03				
	Credits -03						
Course Objectives: The Objectives of Programming for	problem solving are:						
• To learn about C programenvironment.	mming language syntax, semantics	s, and the run	ntime				
• To be familiarized with types, conditional sta	general computer programming co tements, loops and functions.	oncepts like o	lata				
• To be familiarized with general coding techniques and procedure-oriented programming.							
UNIT I]	Hours				
 Introduction to Problem solving: (TB1:33-50) Algorithm, Characteristics of Algorithms, Basic Operations of Algorithms, Pseudo Code, Flowchart, Types of Languages, Relation between Data, Information, Input and Output. Basics of C: (TB1:58-67)History and Features of C, Importance of C, Procedural Language, Compiler versus Interpreter, Structure of C Program, Program Development Steps, Programming Errors. 							
UNIT II							
 Overview of C:(TB:68-125) Character Set, C-Tokens, Data Types, Variables, Constants, Operators, Operator Precedence and Associativity, Converting Mathematical Expressions to C-expressions, Evaluation of C-Expressions, Input/Output Functions. Conditional Branching:(TB1:143-152) if statement, ifelse statement, Nested ifelse statement, ifelseif ladder, switch statement. Unconditional Branching:(TB1:174-175) goto. Control flow Statements: break, continue. Looping Constructs:(TB1:156-170) do-while statement, while statement, 							
Arrays:(TB1:188-222) Introductio representation, 2-D Arrays (Matrix) Strings: Working with Strings, Stri user defined).	n, 1-D Arrays, Character arrays an , Multi-Dimensional Arrays. ng Handling Functions (both libra	id string ry and	8				

Functions:(TB1:230-260) Basics, Necessity and Advantages, Types of	
Functions, Parameter Passing Mechanisms, Recursion, Storage Classes,	
Command Line Arguments, Conversion from Recursion to Iteration and	
Vice-Versa.	
UNIT IV	
Pointers:(TB1:288-347) Understanding Pointers, Pointer Expressions,	
Pointer and Arrays,	
Pointers and Strings, Pointers to Functions. Dynamic Memory Allocation:	
Introduction to Dynamic Memory Allocation- malloc (), calloc (), realloc (),	
free ().	12
Structures and Unions:(TB1:370-394) Defining a Structure, typedef,	12
Advantage of Structure, Nested Structures, Arrays of Structures, Structures	
and Arrays, Structures and Functions, Structures and Pointers, Defining	
Unions, Union within Union, Structure within Union, Union within	
Structure, Self-Referential Structures, Bitfields, Enumerations.	
UNIT V	
Preprocessing Directives:(TB2:325-333) Macro Substitution, File	
Inclusion, Conditional	
Compilation and Other Directives	10
File Management In C:(TB1:408-422) Introduction to File Management,	10
Modes and	
Operations on Files, Types of Files, Error Handling during I/O Operations.	

Text Bo	Text Books/ Reference Books:					
T1	Programming in C ,Pradip Dey ,Manas Ghosh, OXFORD					
T2	Programming in ,C Reema Thareja,Second Edition, OXFORD					
Т3	Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE.					
R1	Computer Fundamentals and Programming, Sumithabha Das, Mc Graw Hill.					
R2	Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson					

Course	Course Outcomes: Student can able to				
CO1	Demonstrate computer components, algorithms, translate them into programs.				
CO2	Choose the suitable control structures for the problem to besolved.				
CO3	Make use of arrays, pointers, structures, and unions effectively.				
CO4	Organize reusable code in a program into functions.				
CO5	Demonstration of file operations.				

COMPUTER AID	COMPUTER AIDED ENGINEERING GRAPHICS						
	Semester I/II						
Subject Code	21AMMEL1050	IA Marks					
Number of Lecture Hours/Week	2(L)+0(T)+2(P)	Exam Marl	KS				
Total Number of Lecture Hours	50	Exam Hou	rs 3				
	Credits – 03						
COURSE OBJECTIVES: On succes	ssful completion of this course	, Students sho	ould be able				
	to						
1. draw engineering objects wi commands of AutoCAD	th appropriate lettering and di	mensioning u	sing various				
2. draw geometric construction	ns, polygons, various types of	curves and sc	ales				
3. construct multi views of poi	nts, lines and planes						
4. construct multi views of soli	ids by orthographic projection	method	1 05				
5. convert the orthographic Commands in AutoCAD	views into isometric views	and vice ver	rsa by 2D-				
Unit -1: IN	FRODUCTION		Teaching Hours				
Introduction to Engineering Graphics, sheet sizes & layouts (ISO), line types with application, scales, drawing sheet sizes, title block, sheet markings, dimensioning AutoCAD: Overview of Computer Graphics, starting with autoCAD, templates, menu- bar, drawing area, option buttons (drawing settings), command line area, draw commands (point, line, polyline, circle, circular arc, ellipse, elliptical arc, spline fit, spline CV, rectangle & polygon), modify commands (move, rotate, trim/extend, erase, copy, mirror, chamfer/ fillet, explode, stretch, scale, array & offset), layers (layering, setting up and use of layers, layers to create drawings and create, edit and use customized layers) & annotation commands (applying dimensions/ annotations to drawings), drawing settings (grid, snap-mode, ortho, polar tracking, object snap, iso-draft), dimension settings (edit/ modify dimension style: text size & style, arrow size & style, line types & thickness and setting other parameters of dimension text, dimension lines & extension lines) Printing documents to paper and to PDF							
Unit -2: CONICS AND SCALES							
Geometrical constructions, polygon hyperbola (Eccentricity method only scales.	s, conic sections – ellipse, y); scales – plain, diagonal a	parabola, nd vernier	10				
Unit – 3: ORTHOGRAPHIC PI	ROJECTION OF POINTS, I	LINE AND P	LANES				
Principles of Orthographic Projection lines (inclined to HP & VP); Projection plane).	ons, Projections of Points, projections of planes (inclined to one	ojection of e reference	10				

Unit – 4: ORTHOGRAPHIC PROJECTION OF SOLIDS					
Projections of Regular Solids- Prisms, Pyramids, Cylinder & Cone (simple position and inclined to one reference plane only)	8				
Unit-5: ISOMETRIC PROJECTIONS AND ORTHOGRAPHIC VIEWS					
Isometric Projections and orthographic views: Principles of isometric projection – isometric scale, isometric views, conventions; isometric views of lines, planes, simple solids, Conversion of Isometric Views to Orthographic Views and vice-versa	10				
COURSE OUTCOMES: On successful completion of this course, students will be able to					
1. understand the BIS conventions of engineering drawing with basic concepts & draw engineering objects with appropriate lettering and dimensioning using various commands of AutoCAD					
 construct polygons, various types of Curves and scales used engineerin like maps, buildings, bridges 	ng application				
 draw multi views of points, lines and planes by orthographic projection draw multi views of solids by orthographic projection method 	method				
 convert the orthographic views into isometric views and vice versa by 2 Commands in AutoCAD 	2D-				
Text Books					

- 1. N.D. Bhatt & V.M. Panchal, Engineering Drawing, 48th edition, 2005, Charotar Publishing House, Gujarat
- 2. R.B.Choudary, Engineering Drawing with AutoCAD 2008, Anuradha Publishers

Reference Books

- 1. S. Trymbaka Murthy, Computer Aided Engineering Drawing, I.K. International Publishing House Pvt. Ltd., New Delhi, 3rd revised edition 2006.
- 2. K.R. Gopalkrishna, Engineering Graphics, 32nd edition, 2005 Subash Publishers, Bangalore

COs VS POs MAPPING (DETAILED; HIGH:3; MEDIUM:2; LOW:1):

PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2				3					2				3
2	2				3					2				3
3	2				3					2				3
4	2				3					2				3
5	2				3					2				3
Over all	2				3					2				3

ENGINEERING PHYSICS LAB (Common for AI&ML, CSE, CST, EEE & IT)							
Semester I/II							
Subject Code	21AMPHL1060 21CTPHL1060 21ITPHL2060 21EEEPHL2060	IA Marks	15				
Number of Practice Hours/Week	03L	Exam Marks	35				
Total Number of Practice Hours	36	Exam Hours	03				
	Credits – 1.5						

COURSE OBJECTIVES:

The objectives of this course, help the students

- **To apply** the theoretical knowledge of Physics through hands on the experimental instruments.
- To improve the experimental knowledge in the later studies.
- To understand the basic need of experiments.
- To know how to measure the different physical quantities.
- **To gain** the knowledge about different electrical components and basic electrical circuits.

List of Experiments

- 1. Determination of the Fermi energy of copper using meter bridge.
- 2. Determination of the Energy band gap of P-N junction diode.
- 3. Study of the spectral response of photo cell-Planck's constant.
- 4. Study of V-I characteristics of LED (Light Emitting Diode) and to determine knee voltage, frequency of the light emitting diode.
- 5. Determination of the frequency of electrical vibrator-Melde's experiment.
- 6. Determination of the wavelength of Laser diode using diffraction.
- 7. Determination of the V-I characteristics of photo diode and to find the variation of photo current as a function of light intensity.
- 8. Study of the characteristics of a photo voltaic cell (Solar cell) and to find Fill factor and efficiency.
- 9. Study of the V-I characteristics of Semiconductor diode, and to determine barrier potential and forward resistance.
- 10. Study of the I/V Characteristics of Zener diode.

Demonstration experiments:

- 1. Determination of the resistivity of a semiconductor using four probes method.
- 2. Estimation of the Hall coefficient of a semiconductor-Hall effect.

COURSE OUTCOMES:

On completion of the course student will able to

- 1. Compare the theory and correlated with experiments.
- 2. **Design** experiments.
- 3. Analyze the experimental result.
- 4. Apply appropriate techniques to perform the experiments.
- 5. **Understand** the interaction of the light with semiconductor.

TEXT BOOKS: "Physics Laboratory Manual" Prepared by Department of Physics, SITE. REFERENCE BOOKS: S. Balasubrahmanian, M.N. Srinivasan "A Text book of Practical Physics" - S. Chand Publishers, 2017. Advanced Practical Physics Vol 1& 2 SP Singh & M.S Chauhan Pragati Prakashan, Meerut WEB SOURCES: http://vlab.amrita.edu/index.php -Virtual Labs, Amrita University Study the characteristic curves of the optoelectronic semiconductor devices.

CO	PO	PSO	PSO	PSO											
co	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	-	2	-	-	-	-	-	-	-	-	-	-	-
2	2	1	-	3	-	-	-	-	-	-	-	-	-	-	-
3	2	2	-	3	-	-	-	-	-	-	-	-	-	-	-
4	3	1	-	3	-	-	-	-	-	-	-	-	-	-	-
5	3	2	-	3	-	-	-	-	-	-	-	-	-	-	-
6	3	2	-	3	-	-	-	-	-	-	-	-	-	-	-
Course	3	2	-	3	-	-	-	-	-	-	-	-	-	-	-

ENGINEERING CHEMISTRY LABORATORY							
Semester I/II							
(Approved syllabus for the academic year 2021 -22)							
Subject Code	21CMCHL1070	IA Marks	15				
Number of Practice Hours/Week	3L	Exam Marks	35				
Total Number of Practice Hours	36	Exam Hours	03				
Credits – 1.5							

List of Experiments

(Any 10 experiments must be conducted)

- 1. Determination of HCl using standard Na₂CO₃ solution
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH
- 3. Determination of surface tension
- 4. Determination of viscosity of a liquid by Ostwald viscometer
- 5. Determination of chloride content of water
- 6. Determination total hardness of water by EDTA.
- 7. Determination of Mg⁺²using standard oxalic acid solution.
- 8. Determination of Cu⁺²using standard hypo solution.
- 9. Determination of the rate constant of first order reaction (Ester hydrolysis)
- 10. Determination of strength of strong acid using conductometeric titration.
- 11. Determination of strength of weak acid using conductometeric titration .
- 12. Determination of Ferrous iron using potentiometer.
- 13. Chemical oscillations- Iodine clock reaction
- 14. Estimation of Vitamin C.

Demonstration Experiments

- 1. Thin Layer Chromatography
- 2. Determination of Fe⁺³by a colorimetric method.

	PROGRAMMING	FOR PROBLEM S Semester I/II	OLVING LAB			
Subjec	ct Code	21CMCSL1080	IA Marks	15		
Numb	er of Lecture hours/Week	3L	Exam Marks	35		
Total 1	Number of Lecture Hours	48	Exam Hours	03		
	Cr	edits -1.5				
Cours 1. 2. 3. 4. 5.	To understand the various ste To understand the basic conce To learn how to write modula To learn to write programs (u problems. To introduce basic data struct	ps in Program develop epts in C Programming r and readable C Prog using structured progra ures such as lists, stac	oment. g Language. rams. amming approach) in ks and queues.	C to solve		
Exerc	ise 1 (Familiarization with p	rogramming environ	ment)			
a) b)	a) Familiarization of CODE BLOCKS C++ Editor to edit, compile, execute, test and debugging C programs.b) Familiarization of RAPTOR Tool to draw flow charts and understand flow of control.					
Exerc	ise 2 (Simple computational	problems using arith	metic expressions)			
a)	Write a C Program to display	real number with 2 de	cimal places.			
b)	Write a C Program to convert	Celsius to Fahrenheit	and vice versa.			
c)	Write a C Program to calculat	te the area of triangle	using the formula			
	area = $\sqrt{(s(s-a)(s-b)(s-c))}$	where $s=a+b+c/2$.				
d)	Write a C program to find the	largest of three numb	ers using ternary oper	rator.		
e)	Write a C Program to swap tw	vo numbers without us	sing a temporary varia	able.		
Exerc	ise 3 (Problems involving II-)	nen-else structures)				
a) b) c)	Write a C Program to check whether a given number is even or odd using bitwise operator, shift operator and arithmetic operator.Write a C program to find the roots of a quadratic equation.Write a C Program to display grade based on 6 subject marks using ifelseif ladder					
d) Exerc	 d) Write a C program, which takes two integer operands and one operator form the user, performs the operation and then prints the result using switch control statement.(Consider the operators +, -,*,/, %) Exercise 4 (Iterative problems) 					
a)	Write a C Program to count a given number.	number of 0's and 1's	in a binary represent	tation of a		

- b) Write a C program to generate all the prime numbers between two numbers supplied by the user.
- c) Write a C Program to print the multiplication table corresponding to number supplied as input

Exercise 5 (Iterative problems)

- a) Write a C Program to Find Whether the Given Number is i)Armstrong Number ii) Palindrome Number
- b) Write a C Program to print sum of digits of a given number

Exercise 6 (Series examples)

- a) Write a C Program to calculate sum of following series
- b) 1+2+3+..., n b)1+1/2+1/3+...+1/n c)1+x+x2+x3...+xn

Exercise 7 (1D Array manipulation)

- a) Write a C program to interchange the largest and smallest numbers in the array.
- b) Write a C program to search an element in an array (linear search).
- c) Write a C Program to print the following pattern using a character array SA SAS SASI

Exercise 8 (Matrix problems, String operations)

- a) Write a C program to add two matrices.
- b) Write a C program to multiply two matrices if they are compatible or print an error message "incompatible matrix sizes" otherwise.
- c) Write a C program to check given matrix is symmetric or not.
- d) Implement the following string operations with and without library functions. i)copy

ii) concatenate iii) lengthiv) compare

Exercise 9 (Simple functions)

- a) Write a C Program demonstrating the following function types
 - i. With arguments and with return value.
 - ii. With arguments and without return value.
 - iii. Without arguments and without return value.
 - iv. Without arguments and with return value.
- b) Write a C Program illustrating call by reference.

Exercise 10 (Recursive functions)

Write a C Program illustrating the following with Recursion without Recursion

a) Factorial b) GCD c) Power d) Fibonacci

Exercise 11(Pointers and structures)

a) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc () function.

b) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc () function.Note: Understand the difference between the above two programs.

c)Write a C Program to read and print student details using structures.

Exercise 12 (File operations)

- a) Write a C program to open a file and to print it contents on screen.
- b) Write a C program to copy files.
- c) Write a C program merges two files onto a new file.
- d) Write a C program to delete a file.

Cours	e Outcomes:
CO1	Attain knowledge on using CODE BLOCKS and RAPTOR tools in solving problems.
CO2	Examine and analyze alternative solutions to a problem.
CO3	Design an algorithmic solution to a problem using problem decomposition and step- wise refinement.
CO4	Demonstrate conversion of iterative functions to recursive and vice-versa.
CO5	Implement the concepts of arrays, structures, Unions and files.

CONSTITUTION OF INDIA, PROFESSIONAL ETHICS & HUMAN RIGHTS						
(Commo	on to all Branches)					
Subject Code	21CMCMSN1090	IA Marks		30		
Number of Lecture Hours/Week	02	Exam Marks	5	70		
Total Number of Lecture Hours	50	Exam Hours		03		
	Credits – 00					
COURSE OBJECTIVES:						
The objectives of this course help the st	udents to					
1. To provide basic information about In	ndian constitution.					
2. To identify individual role and ethica	l responsibility towards	society.				
3. To understand human rights and its in	nplications.					
Unit - I						
Introduction to the Constitution of India, The Making of the Constitution and Salient features of the Constitution.				rs – 0		
Preamble to the Indian Constitution Fur	ndamental Rights & its	limitations.				
Unit - II						
Directive Principles of State Policy & R State Policy Fundamental Duties.	elevance of Directive F	Principles	Hou	rs –		
Union Executives – President, Prime Minister Parliament Supreme Court of India.				0		
Unit – III						
State Executives – Governor, Chief Mir of State. Electoral Process in India, Am 74th, 76th, 86th &91 st Amendments.	nister, State Legislature endment Procedures, 4	High Court 2nd, 44th,	Hou 1	ors – 0		
Unit –IV						
Special Provision for SC & ST Special	Provision for Women, (Children &				
Dackward Classes Emergency Provision		These				
Human Rights – Meaning and Definition Human Rights- Working of National Hu	uman Rights Commission	Themes in on in India	Hour	s –10		
Powers and functions of Municipalities, Societies.	Panchyats and Co - OI	perative				

Unit – V	
Scope & Aims of Engineering Ethics, Responsibility of Engineers Impediments to Responsibility.	
Risks, Safety and liability of Engineers, Honesty, Integrity & Reliability in Engineering.	Hours – 10
COURSE OUTCOMES:	

On completion of the course student will

- 1. Have general knowledge and legal literacy and thereby to take up competitive examinations.
- 2. Understand state and central policies, fundamental duties.
- 3. Understand Electoral Process, special provisions.
- 4. Understand powers and functions of Municipalities, Panchayats and Co-operative Societies, and
- 5. Understand Engineering ethics and responsibilities of Engineers
- 6. Understand Engineering Integrity & Reliability

QUESTION PAPER PATTERN:

SECTION A:

- 1. This section contains ten one answer questions carrying 1 mark each.
- 2. Two questions from each unit should present.

SECTION B:

- 1. This section will have 5 questions with internal choice.
- 2. Each full question carries 12 marks.
- 3. Each full question will have sub question covering all topics under a unit.

TEXT BOOKS:

Text Books:

1. Durga Das Basu: **"Introduction to the Constitution on India",** (Students Edn.) Prentice –Hall EEE, 19th / 20th Edn., 2001

2. Charles E. Haries, Michael S Pritchard and Michael J. Robins **"Engineering Ethics"** Thompson Asia, 2003-08-05.

REFERENCE BOOKS:

1. M.V. Pylee, "An Introduction to Constitution of India", Vikas Publishing, 2002.

2. M. Govindarajan, S. Natarajan, V. S. Senthilkumar, **"Engineering Ethics"**, Prentice – Hall of India Pvt. Ltd. New Delhi, 2004

3. Brij Kishore Sharma, **"Introduction to the Constitution of India"**, PHI Learning Pvt. Ltd., New Delhi, 2011.

4. Latest Publications of Indian Institute of Human Rights, New Delhi

T	ECHNICAL ENGLISH						
(Approved Syl	labus for the Academic Yea	ar 2021-22					
	Semester II/II						
Subject Code	21CMEGT 1010/2010	IA Marks	30				
Number of Lecture Hours/ Week	03	Exam Marks	70				
Total Number of Lecture Hours	50	Exams Hours	03				
	Credits -03						
Course Objectives:							
To enable the students to learn and Communication by focusing on: 1. Technical English Vocabu 2. Writing Skills 3. Common Errors in Writing 4. Nature and Style of Sensib 5. Writing Technical Reports Unit I	l apply fundamental princip lary g le Technical Writing and Letters	oles in Technical Eng	lish &				
 Principles of Scientific vocabulary Principles of Scientific vocabulary: short and simple words-compact substitutes for wordy phrases- redundant words and expressions-Avoid hackneyed and stilted phrases, verbosity and incorrect use of words The role of roots in word building, prefixes and suffixes, confusing words and expressions. 							
Unit II							
Writing Skills							
• Distinguishing between ac	ademic and personal styles	of writing					
• Use of clauses in technical	phrases and sentences		10				
• Techniques of Sentence an	d paragraph writing		hours				
• Measuring the clarity of a	text through Fog Index or C	Clarity Index					
Unit III							
Common Errors in Writing							
 Subject-verb agreement an adjectives Common errors in the use Punctuation Technical Guidelines for C Avoiding the pitfalls 	 Subject-verb agreement and concord of nouns, pronouns and possessive adjectives Common errors in the use of articles, prepositions, adjectives and adverbs Punctuation Technical Guidelines for Communication 						
Unit IV							
Nature and Style of Sensible Teo	chnical Writing		10				
Academic Writing Process	- 0		10				
• Describing, processes and	products		hours				

			1	
•	Defining, Classifying			
•	Effective use of charts, graphs, and t	ables		
Unit V	V			
Repo	rt writing and Letter writing			
•	Writing Technical Reports		10	
•	Précis writing		Hours	
•	Letter Writing		nouis	
•	Essay writing			
COU	RSE OUTCOMES			
On Co	ompletion of the course student will ac	quire		
1.	Ability to understand Scientific voca	bulary and use them confidently		
2.	Familiarity with the basic principles	of writing clear sentences and paragra	phs	
3.	Ability to write error free simple tecl	nnical passages	-	
4.	Knowledge of writing different writi	ng styles		
5.	Confidence to write letters and techn	ical reports clearly and coherently		
Ouest	ion Paper Pattern	1 7 7		
	*			
Sectio	on –A			
1.	10 questions carrying one mark each			
2.	Five questions each from Units I and	III		
Sectio	on –B			
1.	5 questions carrying 12 marks each (one compulsory question from non-de	tailed	
	text)			
2.	Each question will have two or three	sub questions covering all the units		
Text l	Books			
1.	Effective Technical Communication	by Barun K Mitra, Oxford University		
	Publication			
Non	latailad Tayt			
NOII-C	Karmayogi: A Biography of F Sreed	haran by M.S. Ashokan		
1.	Karmayogi. A Diography of E Steed	haran by W S Ashokan		
Refer	ence Books			
	1. Communication Skills by Sanjay	Kumar & Pushpa Latha, OUP		
	2. Study Writing by Liz Hamp-Lyo	ns and Ben Heasly, Cambridge Univer	sity	
	Press.			
	3. Remedial English Grammar by F	T Wood, Macmillian 2007		
	4. Practical English Usage by Mic	hael Swan Oxford University Press		
	5. English Collocations in Use by N	Aichael McCarthy & Felicity O'Dell		
	6. Effective Technical Communicat	ion by Arsahf Rizvi,		
	7. Essential English Grammar by R	aymond Murphy, CUP, 2017		
	0			
Unit	Title	Text books/Reference Book	KS	
т	Principles of Scientific Vocabulary	Text Book 1		
	Timespies of Scientific Vocabulary	Reference Book 5		
Π	Writing Skills	Text Book 1		
	5	Reference Book 2		

		Reference Book 6
		Text Book 1
тт	Common Errors in Writing	Reference Book 3
111	Common Errors in writing	Reference Book 4
		Reference Book 7
	Nature and Style of Sensible	Text Book 1
IV	Technical Writing	Reference Book 1
		Reference Book 2
		Text Book 1
V	Report writing and Letter writing	Reference Book 1
		Reference Book 2

COs VS POs MAPPING (DETAILED; HIGH:3; MEDIUM:2; LOW:1):

P0	PO	РО	PO	PO	PO	PSO	PSO	PSO							
co	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C111.1	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-
C111.2	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-
C111.3	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-
C111.4	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-
C111.5	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-
C111.6	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-
Overall										2					
Course										2					

ENGINEE	RING MATHEMAT	ICS-II					
(Linear algebra, Laplace transforms & Numerical Methods)							
(Syllabus for	the academic year 202	21 -2022)					
Com	mon to all the branches	8					
	SEMESTER - II/II		•				
Subject Code	21CMMAT2020	IA Marks	30				
Number of Lecture Hours/Week	3	Exam Marks	70				
Total Number of Lecture Hours	50	Exam Hours	03				
	Credits – 03						
Course objectives:							
To enable students to apply the knowled	lge of Mathematics in v	arious engineering					
fields by making them to learn the follow	wing	1 1 1 .	с · 1				
1. To develop the use of matrix al	gebra techniques that 1	s needed by engineer	is for practical				
applications and solve system of	linear equations						
2. To find the inverse and power	of a matrix by Cayley	-Hamilton theorem a	ind reduce the				
Quadratic form	www.	0. ///20 .0					
5. To solve initial value problems to	y using Laplace transit	UTIIIS	to the				
4. To find the solution of algebraic/	transcendental equation	ons and also interpola	te the				
5 To apply different algorithms	for approximating the	colutions of ordina	ry differential				
5. To apply unterent algorithms	to its analytical compu	tations	Ty unrefermat				
Unit -1	to its analytical compu	tations.					
Solving systems of linear equations: F	Pank of a matrix by ech	pelon form and norm					
form - Solving system of homogeneou	and non homogeneous	ous linear equations	10 Hours				
Gauss Elimination method- Jacobi and	Gauss-Seidel methods	for solving system of	- 10 110 min				
equations numerically	Oduss-Selder methods	for solving system (<i>'</i> 1				
Unit -2							
Eigen values and Eigen vectors. Cavle	v–Hamilton theorem	and Ouadratic					
forms: Eigen values and Eigen vectors a	and properties- Cavley-	-Hamilton theorem					
(without proof) – Reduction to Diagona	ll form – Ouadratic for	ms and nature of the	10 Hours				
guadratic forms – Reduction of guadrati	c form to canonical for	ms by orthogonal					
transformation, Diagonalisation and Lag	grange's reduction	, ,					
Unit – 3							
Laplace Transforms: Laplace transform	ns – Definition and La	place transforms of					
some certain functions-Shifting theorem	ns – Transforms of der	ivatives and integrals					
- Unit step function - Dirac's delta funct	tion Periodic function -	- Inverse Laplace	10 Hours				
transforms-Convolution theorem (with	out proof).	-					
Applications: Solving ordinary differen	tial equations (initial	value problems) usin	g				
Laplace transforms.							
Unit - 4			I				
Numerical Methods: Introduction - N	Method of false position	on - Newton-Raphso	n				
method (One Variable) Introduction-	Errors in polynomial	interpolation – Finit	ie				
differences– Forward differences– Ba	ckward differences –	Central differences	- 10 Hours				
Relations between operators – Newt	on's forward and ba	ckward formulae fo	or				
interpolation – Interpolation with un	equal intervals – Lag	grange's interpolatio	n				
formula.	-						
Unit – 5							
Numerical integration, Solution of o	rdinary differential e	equations with initia	al 10 Hours				
conditions: Trapezoidal rule - Simpson	n's 1/3rd and 3/8th ru	le - Solution of initia	al				

 Euler's method – Runge -Kutta method (second and fourth order). Course outcomes: On completion of this course, students are able to, 1. Develop the use of matrix algebra techniques that is needed by engineers for practica applications and solve system of linear equations (L6) 2. Find the inverse and power of a matrix by Cayley-Hamilton theorem and reduce th Quadratic form (L3) 3. Solve initial value problems by using Laplace transforms (L3) 4. Find the solution of algebraic/ transcendental equations and also interpolate the functions(L3) 5. Apply different algorithms for approximating the solutions of ordinary differential equation with initial conditions to its analytical computations (L3). Question paper pattern: 5. Question paper consists of 10 questions. 6. Each full question carrying 14 marks. 7. Each full question will have sub question covering all topics under a unit. 8. The student will have to answer 5 full questions selecting one full question from each unit Text Books: 1. Br. S. Grewal, "Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. 2. Kreyszig, "Advanced Engineering Mathematics" Tata Mc Graw-Hill, 2006 Reference Books: 1. Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. 2. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 3. M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. 4. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	value	problems by Taylor's series– Picard's method of successive approximations–
 Course outcomes: On completion of this course, students are able to, 1. Develop the use of matrix algebra techniques that is needed by engineers for practice applications and solve system of linear equations (L6) 2. Find the inverse and power of a matrix by Cayley-Hamilton theorem and reduce th Quadratic form (L3) 3. Solve initial value problems by using Laplace transforms (L3) 4. Find the solution of algebraic/ transcendental equations and also interpolate the functions(L3) 5. Apply different algorithms for approximating the solutions of ordinary differential equation with initial conditions to its analytical computations (L3). Question paper pattern: 5. Question paper consists of 10 questions. 6. Each full question carrying 14 marks. 7. Each full question will have to answer 5 full questions selecting one full question from each unit Text Books: 1. B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. 2. Kreyszig, "Advanced Engineering Mathematics" - Wiley, 9th Edition, 2013. 3. B.V.Ramana "Higher Engineering Mathematics" Tata Mc Graw-Hill, 2006 Reference Books: 1. Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. 2. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. 4. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014.	Euler'	s method – Runge -Kutta method (second and fourth order).
 On completion of this course, students are able to, Develop the use of matrix algebra techniques that is needed by engineers for practica applications and solve system of linear equations (L6) Find the inverse and power of a matrix by Cayley-Hamilton theorem and reduce th Quadratic form (L3) Solve initial value problems by using Laplace transforms (L3) Find the solution of algebraic/ transcendental equations and also interpolate the functions(L3) Apply different algorithms for approximating the solutions of ordinary differential equation with initial conditions to its analytical computations (L3). Question paper pattern: Question paper consists of 10 questions. Each full question carrying 14 marks. Each full question will have sub question covering all topics under a unit. The student will have to answer 5 full questions selecting one full question from each unit Text Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. 	Cours	e outcomes:
 Develop the use of matrix algebra techniques that is needed by engineers for practica applications and solve system of linear equations (L.6) Find the inverse and power of a matrix by Cayley-Hamilton theorem and reduce th Quadratic form (L.3) Solve initial value problems by using Laplace transforms (L.3) Find the solution of algebraic/ transcendental equations and also interpolate the functions(L.3) Apply different algorithms for approximating the solutions of ordinary differential equation with initial conditions to its analytical computations (L.3). Question paper pattern: Question paper consists of 10 questions. Each full question carrying 14 marks. Each full question will have sub question covering all topics under a unit. The student will have to answer 5 full questions selecting one full question from each unit Text Books: B. S. Grewal, "Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics" and C Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	On con	mpletion of this course, students are able to,
 applications and solve system of linear equations (L6) 2. Find the inverse and power of a matrix by Cayley-Hamilton theorem and reduce th Quadratic form (L3) 3. Solve initial value problems by using Laplace transforms (L3) 4. Find the solution of algebraic/ transcendental equations and also interpolate the functions(L3) 5. Apply different algorithms for approximating the solutions of ordinary differential equation with initial conditions to its analytical computations (L3). Question paper pattern: 5. Question paper consists of 10 questions. 6. Each full question carrying 14 marks. 7. Each full question will have sub question covering all topics under a unit. 8. The student will have to answer 5 full questions selecting one full question from each unit Text Books: B. S. Grewal, "Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics" - Wiley, 9th Edition, 2013. 3. B.V.Ramana "Higher Engineering Mathematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineerin Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	1.	Develop the use of matrix algebra techniques that is needed by engineers for practical
 Find the inverse and power of a matrix by Cayley-Hamilton theorem and reduce th Quadratic form (L3) Solve initial value problems by using Laplace transforms (L3) Find the solution of algebraic/ transcendental equations and also interpolate the functions(L3) Apply different algorithms for approximating the solutions of ordinary differential equation with initial conditions to its analytical computations (L3). Question paper pattern: Question paper consists of 10 questions. Each full question carrying 14 marks. Each full question will have sub question covering all topics under a unit. The student will have to answer 5 full questions selecting one full question from each unit Text Books: S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016.	_	applications and solve system of linear equations (L6)
 3. Solve initial value problems by using Laplace transforms (L3) 4. Find the solution of algebraic/ transcendental equations and also interpolate the functions(L3) 5. Apply different algorithms for approximating the solutions of ordinary differential equation with initial conditions to its analytical computations (L3). Question paper pattern: 5. Question paper consists of 10 questions. 6. Each full question carrying 14 marks. 7. Each full question will have sub question covering all topics under a unit. 8. The student will have to answer 5 full questions selecting one full question from each unit Text Books: B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	2.	Find the inverse and power of a matrix by Cayley-Hamilton theorem and reduce the
 Solve initial value problems by using Laplace transforms (L3) Find the solution of algebraic/ transcendental equations and also interpolate the functions(L3) Apply different algorithms for approximating the solutions of ordinary differential equation with initial conditions to its analytical computations (L3). Question paper pattern: Question paper consists of 10 questions. Each full question carrying 14 marks. Each full question will have sub question covering all topics under a unit. The student will have to answer 5 full questions selecting one full question from each unit Text Books: B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics" - Wiley, 9th Edition, 2013. B.V.Ramana "Higher Engineering Mathematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineerin Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	2	Quadratic form (L3)
 Find the solution of ageorate/ transcendental equations and also interpolate the functions(L3) Apply different algorithms for approximating the solutions of ordinary differential equation with initial conditions to its analytical computations (L3). Question paper pattern: Question paper consists of 10 questions. Each full question carrying 14 marks. Each full question will have sub question covering all topics under a unit. The student will have to answer 5 full questions selecting one full question from each unit Text Books: B. S. Grewal, "Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics" - Wiley, 9th Edition, 2013. B.V.Ramana "Higher Engineering Mathematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineerin Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	כ. ⊿	Solve initial value problems by using Laplace transforms (L3) Find the solution of algebraic/transcondental equations and also interpolate the
 Apply different algorithms for approximating the solutions of ordinary differential equation with initial conditions to its analytical computations (L3). Question paper pattern: Question paper consists of 10 questions. Each full question carrying 14 marks. Each full question will have sub question covering all topics under a unit. The student will have to answer 5 full questions selecting one full question from each unit Test Books: B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics" - Wiley, 9th Edition, 2013. B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	4.	functions(L3)
 with initial conditions to its analytical computations (L3). Question paper pattern: 5. Question paper consists of 10 questions. 6. Each full question carrying 14 marks. 7. Each full question will have sub question covering all topics under a unit. 8. The student will have to answer 5 full questions selecting one full question from each unit Text Books: B. S. Grewal, "Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics" - Wiley, 9th Edition, 2013. B. V.Ramana "Higher Engineering Mathematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitcch Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	5.	Apply different algorithms for approximating the solutions of ordinary differential equations
 Question paper pattern: 5. Question paper consists of 10 questions. 6. Each full question carrying 14 marks. 7. Each full question will have sub question covering all topics under a unit. 8. The student will have to answer 5 full questions selecting one full question from each unit Text Books: B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics" - Wiley, 9th Edition, 2013. B. V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineerin Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 		with initial conditions to its analytical computations (L3).
 Question paper consists of 10 questions. Each full question carrying 14 marks. Each full question will have sub question covering all topics under a unit. The student will have to answer 5 full questions selecting one full question from each unit Text Books: B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics" - Wiley, 9th Edition, 2013. B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	Quest	ion paper pattern:
 Each full question carrying 14 marks. Each full question will have sub question covering all topics under a unit. The student will have to answer 5 full questions selecting one full question from each unit Text Books: B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics " - Wiley, 9th Edition, 2013. B.V.Ramana "Higher Engineering Mathematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	5.	Question paper consists of 10 questions.
 Each full question will have sub question covering all topics under a unit. The student will have to answer 5 full questions selecting one full question from each unit Text Books: B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics" - Wiley, 9th Edition, 2013. B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	6.	Each full question carrying 14 marks.
 8. The student will have to answer 5 full questions selecting one full question from each unit Text Books: B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics" - Wiley, 9th Edition, 2013. B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineerin Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	7.	Each full question will have sub question covering all topics under a unit.
 Text Books: B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics " - Wiley, 9th Edition, 2013. B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineerin Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	8.	The student will have to answer 5 full questions selecting one full question from each unit.
 B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44th Edition, 2016. Kreyszig, "Advanced Engineering Mathematics " - Wiley, 9th Edition, 2013. B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	Text I	Books:
 Kreyszig, "Advanced Engineering Mathematics " - Wiley, 9th Edition, 2013. B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	1.	B. S. Grewal," Higher Engineering Mathematics", Khanna publishers, 44 th Edition, 2016.
 B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	2.	Kreyszig, "Advanced Engineering Mathematics " - Wiley, 9 th Edition, 2013.
 Reference Books: Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineerin Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	3.	B.V.Ramana "Higher Engineering M athematics" Tata Mc Graw-Hill, 2006
 Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineerin Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	Refer	ence Books:
 Volume II" Scitech Publications, 2017. Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	1.	Dr.K.V.Nageswara Reddy and Dr.B.Rama Bhupal Reddy, "Engineering Mathematics
 Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering an Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineerin Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 		Volume II" Scitech Publications, 2017.
 Science, Tata McGraw Hill Education, 4th Edition, 2018 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineerin Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	2.	Steven C. Chapra, Applied Numerical Methods with MATLAB for Engineering and
 M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineerin Computation, New Age International Publications, 3rd Edition, 2020. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	_	Science, Tata McGraw Hill Education, 4th Edition, 2018
 Computation, New Age International Publications, 3rd Edition, 2020. 4. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014. 	3.	M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering
4. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014.	4	Computation, New Age International Publications, 3rd Edition, 2020.
	4.	Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 1st Edition 2014.

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3	3	-	-	-	-	-	-	-	-	-	-	-	-	I
2	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
5	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
Course	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-

Basic E (Proposed syllabu Common for ECI	Electrical Engineering is for the academic year 202 E, CSE, IT/ CE, EEE, ME,	21-22) ECT,					
	CST, AI & ML Emested II/II						
Subject Code	21CMEET2030	IA Mar	ks	30			
Number of Lecture Hours/Week	$\frac{3L+1T}{3L+1T}$	Exam Ma	arks	70			
Total Number of Lecture Hours	Total Number of Lecture Hours 50 Exam Hours 03						
	Credits-03						
C	Course Objectives:						
This course will enable student to	, , , , , , , , , , , , , , , , , , ,						
1. Understand basic electrical circuit	operation.						
2. Understand the concept of Alterna	ting Voltage and Current.						
3. Understand the operation of DC n	nachines.						
4. Understand the working of measu	ring instruments.						
5. Understand the operation of differ	ent types of ac machines.						
6. Understand the concept of Electric	cal Safety.						
Un	iit -1						
Basic Electrical Circuits:							
Basic definitions (Electric Charge, C	Current, Electro Magnet Forc	e, Potential					
Difference; Electric Power and Energy	y) – types of network elemen	ts – Ohm's					
Law – Kirchhoff's Laws –series & par	rallel circuits - network theor	rems (Super	Hour	rs – 10			
position, Thevinen's, Norton's, Maxim	num power transfer theorems	s)					
	Unit -2						
AC Fundamentals & Basic Electroma Study of AC Voltage and Current, RMS Delta connections, Alternating Voltage Capacitance and their combinations, Co Circuit. Concept of Magnetic Field, Magneto M and Mutual Induction, Basic Electromag	agnetic Laws: S and Average Values, Three e applied to Pure Resistance, oncept of Power and Power F Motive Force (MMF), Perme gnetic laws,	e phase Star- Inductance, Factor in AC eability; Self	Hour	rs – 10			
	Unit – 3						
DC Machines: DC Machine -Principle of operation & equation - speed control methods – applications of DC motors.	k construction – emf equation – emf equation – end efficiency – b	on- torque orake test.	Hour	rs – 10			
	Unit – 4		1				
AC Machines: Single Phase Transformers - Const Classification - Applications-OC & regulation & Efficiency. Three Phase Induction Motors: working characteristics-losses and efficiency.	truction and Operation- P SC test of single phase to g principle- construction, spe	rinciples - ransformer- eed- torque	Hour	rs – 10			

	Unit – 5	
Elec	ctrical Safety: Electrical Shock and Precautions against it, Treatment of	
Elect	tric Shock; Concept of Fuses and Their Classification, Selection and	Hours – 10
Appl	lication; Concept of Earthing.	
Cours	se Outcomes: The student should be able to	
1.	Understand basic electrical circuit operation.	
2.	Understand the concept of Alternating Voltage and Current.	
3.	Understand the operation of DC machines.	
4.	Understand the working of measuring instruments.	
5.	Understand the operation of different types of ac machines.	
6.	Understand the concept of Electrical Safety.	
Text l	Books:	
	i. Electrical Circuit Theory and Technology by John Bird, Routledge T	aylor
	&Francis Group.	•
	ii. Principles of Electrical Machines by V.K. Mehta & Rohit Mehta, S.	Chand and
	Company Limited.	
Refer	ence Books:	
i.	Theory and Performance of Electrical Machines by J.B. Gupta, S.K.Kataria	& Sons.
ii.	A Textbook of Electrical Technology – Volume II: AC & DC Machines by	B.L.Theraja
	& A.K. Theraja, S.Chand and Company Limited.	
iii.	Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2	nd edition.
iv.	Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH Public	cations
v.	Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publicatio	ns, 2nd
	edition.	
vi.	Electrical Technology by Surinder Pal Bali, Pearson Publications.	

Electrical Technology by Surinder Pal Bali, Pearson Publications. vi.

COURSE-OUTCOMES-TO-PROGRAM-OUTCOMES-MAPPING:

COs /	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	PO	PS	PS	PS
POs	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03
CO1	2	2	1												
CO2	2	2	1												
CO3	2	2	1												
CO4	2	2	1												
CO5	2	2	1												
CO6	2	2	1												
Overal l Cours	2	2	1												

РУТНО	ON PROGRAMMI	NG	
	Semester II/II		
Subject Code	21CMCST2040	IA Marks	30
Number of Lecture hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits-03		-
Course Objectives:			
The Objectives of Python Programmin	g are:		
• To learn about Python program	ming language synt	ax, semantics, and the	e runtime
environment.		, , ,	
• To be familiarized with general	l computer program	ming concepts like da	ta types,
conditional statements, loops a	nd functions.	0	• 1
• To be familiarized with genera	l coding techniques	and object-oriented p	rogramming
and Graphical User Interfaces.			
UNIT I			Hours
Introduction:(TB1:22-30, TB2:1.1-1	.4. TB2:1.21-1.33)	Introduction to	
Python, Program Development Cycle,	Input, Processing, a	nd Output.	
Displaying Output with the Print Func	tion. Variables. Rea	ding Input from the	
Keyboard, Operators.	,	8 F	
Data Types, and Expression: (TB1:4	1-59) Strings Assig	nment, and	10
Comment, Numeric Data Types and C	haracter Sets, Type	conversions,	10
Expressions, Using functions and Mod	lules.	,	
Decision Structures and Boolean Lo	gic:(TB1:77-85) if,	if-else, if-elif-else	
Statements, Nested Decision Structure	s, Comparing String	s, Logical	
Operators, Boolean Variables.			
UNIT II			
Control Statement:(TB1:65-72, TB1	:86-91)		
Definite iteration for Loop Formatting	Text for output, Sel	ection if and if else	
Statement Conditional Iteration, The V	Vhile Loop, Nested	Loops.	12
Strings and Text Files:(TB1:103-125	5) Accessing Charac	ter and Substring in	12
Strings, Data Encryption, Strings and I	Number Systems, St	ring Methods, Text	
Files.			
UNIT III			
List and Dictionaries:(TB1:135-145,	TB1:153-158) List	s,Tuples,Sets,	
Dictionaries.			
Design with Function:(TB1:146-149)	, TB1:169-190) Fun	ctions as	10
Abstraction Mechanisms, Problem Sol	ving with Top-Dow	n Design, Design	10
with Recursive Functions, Case Study	Gathering Informat	ion from aFile	
System. Modules: (TB2:8.1-8.5) Mod	ules, Standard Mod	ules, Packages.	
UNIT IV			
File Operations:(TB1:122-123)Readi	ng config files in py	thon, Writing log	
files in python, Understanding read fur	nctions, read(), read	line() and	
readlines(), Understanding write funct	ions, write() and wri	telines().Object	
Oriented Programming:(TB2:5.1-5.	20, TB2:6.1-6.17) (Concept of class,	8
object and instances, Constructor, clas	s attributes and dest	ructors, Inheritance.	
Design with Classes:(TB1:294-301, 7	FB1:309-330) Object	cts and Classes, Data	
modeling Examples, Case Study an A7	ГМ.		
UNIT V			

Errors and Exceptions Actions, R Graphical Programs a Other Usef Course Ou	d Exceptions:(TB2:7.1-7.8) Syntax Errors, Exceptions, Handling A, Raising Exceptions, User-defined Exceptions, Defining Clean-up edefined Clean-up Actions. User Interfaces:(TB1:245-288) The Behavior of Terminal Based and GUI -Based,Programs, Coding Simple GUI-Based Programs, Ful GUI Resources. tcomes: After completion of this course student will able to learn	8	
CO1	Explain the fundamental concepts in the Python language.		
CO2	Implementation of python iterative statements and strings.		
CO3	Demonstrate python lists, dictionaries, and functions.		
CO4	Understand the concepts of modules and packages in python.		
CO5	Complete coding challenges related to object-oriented programm	ning.	
CO6	Apply variety of error handling and GUI programming technique	es.	

Text Books / References:						
T1	Fundamentals of Python First Programs, Kenneth. A. Lambert, Cengage.					
T2	Python Programming: A Modern Approach, Vamsi Kurama, Pearson.					
R1	Introduction to Python Programming, Gowrishankar.S, Veena A, CRC Press.					
R2	Introduction to Programming Using Python, Y. Daniel Liang, Pearson.					
W1	https://www.tutorialspoint.com/python3/python_tutorial.pdf					

DATA STRUCTURES								
	Semester II/II	TA NO 1		20				
Subject Code		30						
Number of Lecture hours/Week		70						
Total Number of Lecture Hours	50	Exam Hours		03				
Credits-03								
Course Objectives:								
The objective of the course is to								
• Introduce the fundamental cond	cepts of data structur	es and abstract data ty	ypes.					
• Emphasize the importance of da	ata structures in deve	eloping and implemen	ting e	fficient				
algorithms.								
• Describe how arrays, records, 1	linked structures, sta	icks, queues, trees, an	id gra	phs are				
represented in memory and use	d by algorithms.		1					
UNIT I			Hou	rs				
Data Structures -(RB3: 1.1-1.20) De	finition, Classification	on of Data						
Structures, Operations on Data Structu	ires, Abstract Data T	Sype (ADT),						
Preliminaries of algorithms. Time and	Space complexity.			10				
Searching (TB1: 424-434)- Linear sea	arch, Binary search,	Fibonacci search.		10				
Sorting (TB1: 434-460)- Insertion son	rt, Selection sort, Ex	change (Bubble sort,						
quick sort), distribution (radix sort), m	erging (Merge sort)	algorithms.						
UNIT II								
Linked List: (TB1: 162-211) Introduc	ction, Single linked	list, Representation						
of Linked list in memory, Operations	on Single Linked Lis	st-Insertion,						
Deletion. Search and Traversal. Reversing Single Linked list. Applications on								
Single Linked list- Polynomial Expression Representation. Addition and								
Multiplication, Sparse Matrix Representation using Linked List, Advantages								
and Disadvantages of Single Linked list, Double Linked List-Insertion,								
Deletion, Circular Linked list-Insertion, Deletion.								
UNIT III								
Oueues: (TB1: 253-275) Introduction	to Oueues, Represe	ntation of Oueues-						
using Arrays and using Linked list. I	mplementation of	Oueues-using						
Arrays and using Linked list, Application of Oueues, Circular Oueues.								
Arrays and using Linked list, Application of Queues, Circular Queues, Deques, Priority Queues, Multiple Queues.								
Stacks:(TB1: 219-243)Introduction t	o Stacks, Array Rep	resentation of		10				
Stacks, Operations on Stacks, Linked	list Representation o	f Stacks, Operations						
on Linked Stack, Applications-Revers	ing list, Factorial Ca	lculation, Infix to						
Postfix Conversion, Evaluating Postfix	x Expressions.							
UNIT IV	•							
Trees:(TB1: 279-306) Basic Termino	logy in Trees. Binar	v Trees-Properties.						
Representation of Binary Trees using Arrays and Linked lists. Binary Search								
Trees- Basic Concepts, BST Operation	ns: Insertion, Deletio	on, Tree Traversals.		0				
Applications-Expression Trees, Heap	Sort, Balanced	. ,		δ				
[Binary Trees (RB3: 7.50-7.57) - AVL Trees, Insertion, Deletion and								
Rotations.]	. ,							
UNIT V			1					
Graphs: (TB1: 383-419) Basic Conce	ents. Representations	s of Graphs-						
Adjacency Matrix and using Linked li	st. Graph Traversals	(BFT & DFT).		8				

Applications- Minimum Spanning Tree Using Prims &Kruskals Algorithm,	
Dijkstra's shortest path, Transitive closure, Warshall's Algorithm.	

Text E	Text Books / Reference Books:							
T1	Data Structures Using C. 2 nd Edition. Reema Thareja, Oxford.							
T2	Data Structures and algorithm analysis in C, 2 nd ed, Mark Allen Weiss.							
T3	Fundamentals of Data Structures in C, 2nd Edition, Horowitz, Sahni, Universities							
	Press.							
R1	Data Structures: A PseudoCode Approach, 2/e, Richard F.Gilberg, Behrouz A.							
R2	Forouzon, Cengage.							
R3	Data Structures with C, Seymour Lipschutz TMH							
W1	http://algs4.cs.princeton.edu/home/							
W2	https://faculty.washington.edu/jstraub/dsa/Master_2_7a.pdf							

Course Outcomes: After completing this course a student will be able to:							
CO1	Discuss the Basics of data structures and computational efficiency of algorithms for						
	sorting & searching.						
CO2	Illustration of linked lists and its operations.						
CO3	Design programs using a variety of data structures such as stacks and queues.						
CO4	Demonstrate different tree traversing method.						
CO5	Describing the graphs concepts.						

English & Communication Skills Lab									
(Approved Syllabus for the Academic Year 2021 -2022)									
Semester II/II									
Subject Code	21CMEGL2060	IA Marks	15						
Number of Practical Hours/Week	03	Exam Marks	35						
Total Number of Practical Hours	36	Exam Hours 03							
Credits – 1.5									

Objectives: To enable the students to learn communication skills of Listening, Speaking, Reading and Writing by focusing on:

- Listening Comprehension
- Pronunciation
- Functional English in formal and Informal Situations
- Interpersonal Communication Skills
- Presentations

List of Experiments

- UNIT I Listening Comprehension
- UNIT II Pronunciation , Stress, Intonation & Rhythm
- **UNIT II** Common Everyday Situations: Conversations & Dialogues;

Communication at Workplace: Job Application letter, Email & Resume

- UNIT IV Interpersonal Communication Skills-
- **UNIT V** Formal Presentations

Outcomes:

By the end of the course the students will be able to acquire basic Proficiency in English by practicing the following:

- 1. Listening Comprehension
- 2. Pronunciation
- 3. Dialogues
- 4. Interpersonal Communication Skills
- 5. Presentations

Learning Resources:

- 1. Interact English Lab Manual for Undergraduate Students by Orient BlackSwan
- 2. Ted Talks, Interviews with Achievers and select movies
- 3. Toastmaster's speeches and table topics
- 4. Book Reviews and movie reviews
- **5.** Exercises in Spoken English Parts: I-III, CIEFL, Hyderabad.
- 6. Oxford Guide to Effective Writing and Speaking by John Seely
- 7. https://www.ted.com/talk

Basic Electric (Proposed syllabus	al Engineering Laboratory for the academic year 20	y)21-22)									
Common for ECE, CSE, IT/ CE, EEE, ME, ECT, CST. AI & ML											
Subject Code	21CMEEL2070	IA Marks	15								
Number of Lecture Hours/Week	3P	Exam Marks	35								
Total Number of Lecture Hours	36	Exam Hours	03								
	Credits-1.5										
Со	urse Objectives:										
This course will enable the stude	ent to										
1. Verify the Kirchoff's laws, network	k theorems for a given circ	uit.									
2. Analyze the performance of DC shu	nt generator.										
3. Control the speed of DC motor.											
4. Predetermine the efficiency DC mac	hine.										
5. Analyze performance of three phase	induction motor.										
6. Determine the regulation of an altern	ators.										
List of Experiments (Any	y ten experiments must be	e conducted)									
1. Verification of Kirchoff's laws.											
2. Verification of Thevenin's Theore	em.										
3. Verification of Norton's Theorem.											
4. Verification of Superposition theo	renn for Theorem										
6 Speed control of D C shunt motor											
7 Brake test on DC shunt motor											
8. Calibration of wattmeter.											
9. OC & SC tests on single-phase tran	sformer.										
10. Brake test on 1-phase Induction mo	tor.										
11. Brake test on 3-phase Induction mo	tor.										
12. Study experiment on Ear thing.											
		COURSE OU	TCOM								
On completion of t	he course student will be a	ble to:									
1. Verify the Kirchoff's laws.		••••									
2. Verify network theorems for a give	n circuit.										
3. Control the speed of DC motor.											
4. Analyze performance of single-phase	e induction motor										
5. Analyze performance of three phase	induction motor.										
6. Identify different types of earthings											
- in actuary anterent types of earthings											

COURSE-OUTCOMES-TO-PROGRAM-OUTCOMES-MAPPING:

COs /	Р	Р	Р	Р	Р	Р	Р	Р	Р	PO	PO	PO	PS	PS	PS
POs	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03
CO1			2												
CO2			2												
CO3			2												
CO4			2												
CO5			2												
CO6			2												
Overall Course			2												
Data Structures Lab															
-------------------------------	-------------	------------	----	--	--	--									
Semester II															
Subject Code	21AMAML2080	IA Marks	30												
Number of Lecture hours/Week	3	Exam Marks	70												
Total Number of Lecture Hours	48	Exam Hours	03												
Credits -1.5	ż	-													

List of Experiments

Exercise -1 (Arrays and Dynamic memory allocation)

- Write C program to insert and delete the elements of one dimensional array.
- Write C program to create Dynamic memory allocation using malloc (), calloc ().
- Write C program to create Dynamic memory allocation using realloc ().

Exercise -2 (Searching)

- Write C program that use both recursive and non-recursive functions to perform Linear search for a key value in a given list.
- Write C program that use both recursive and non-recursive functions to perform Binary search for a key value in a given list.

Exercise -3 (Sorting-I)

- Write C program that implement Bubble sort, to sort a given list of integers in ascending order.
- Write C program that implement Quick sort, to sort a given list of integers in ascending order.
- Write C program that implement Insertion sort, to sort a given list of integers in ascending order.
- Write C program that implement merge sort, to sort a given list of integers in ascending order.

Exercise -4(Singly Linked List)

- Write a C program that uses functions to create a singly linked list.
- Write a C program that uses functions to perform insertion operation on a singly linked list.
- Write a C program that uses functions to perform deletion operation on a singly linked list.
- Write a C program to reverse elements of a single linked list.

Exercise -5(Queue)

- Write C program that implement Queue (its operations) using arrays.
- Write C program that implement Queue (its operations) using linked lists.

Exercise -6(Stack)

- Write C program that implement stack (its operations) using arrays.
- Write C program that implement stack (its operations) using Linked list.
- Write a C program that uses Stack operations to evaluate postfix expression.

Exercise -7(Binary Tree)

Write a recursive C program for traversing a binary tree in preorder, in order and post order.

Exercise -8(Binary Search Tree)

- Write a C program to Create a BST
- Write a C program to insert a node into a BST.
- Write a C program to delete a node from a BST

Course (Course Outcomes: By the end of this lab the student can				
CO1	Making use of basic data structures such as arrays and linked list to solve				
	problems.				
CO2	Demonstrate fundamental algorithmic problems including Tree Traversals,				
	Graph traversals, and shortest paths.				
CO3	Solve various searching and sorting problems.				

ENVIRON	MENTAL SCIENCE			
S	Semester II	T		
Subject Code	21CMCHN2090	IA Marks		30
Number of Lecture Hours/Week	2	Exam Marks		70
Total Number of Lecture Hours	32	Exam Hours		03
Credits – 00				
COURSE OBJECTIVES:				
The objectives of this course, help the st	tudents to			
1. Acquire knowledge on global en	vironmental challenges	•		
2. Learn different types of natural r	resources			
3. Create awareness on biodiversity	y and ecology.			
4. Gain scientific knowledge on en	vironmental pollution			
5. Acquire knowledge on water con	nservation methods and	environmental	legisla	tion
Module -1				
MULTIDISCIPLINARY NATURE C	DF ENVIRONMENTA	L STUDIES		
Environment - Definition, Introducti	on - Scope and Import	ance - Global	TT	. (
environmental challenges, global warm	ning & climate change	- Acid rains,	Hours	s – o
ozone layer depletion - Role of Informa	ation Technology in Env	vironment and		
human health.				
Module -2				
NATURAL RESOURCES				
Renewable and non-renewable resource	es – Natural resources a	nd associated		
problems –				
Forest resources – Use, deforestation - T	imber extraction – Min	ing, dams and		
other effects on forest and tribal people		C,		
Water resources – Floods, drought, , dar	ms – benefits and proble	ems	Hours	s6
Mineral resources: Use and exploitation	n, environmental effects	of extracting		
and using mineral resources.		_		
Food resources: Effects of modern agric	ulture - fertilizer-pestic	ide problems,		
water logging, eutrophication, biologica	l magnification and sali	inity.		
Energy resources: Renewable and non-r	enewable energy resour	rces		
Role of an individual in conservation of	natural resources.			
Module – 3				
ECOSYSTEM AND BIODIVERSITY	Y			
Ecosystem - Concept of an ecosystem.	- Structure and function	of an		
ecosystem Producers, consumers and	decomposers Energy	flow in the		
ecosystem - Food chains, food webs and	l ecological pyramids			
Introduction, types, characteristic featur	es, structure and function	on of the	Hour	s _8
Forest and grassland ecosystem.			mour	5 0
Biodiversity - Introduction - Definition	on: genetic, species ar	nd ecosystem		
diversity. – Value of biodiversity: cons	sumptive use, productiv	ve use, social,		
ethical and optional values - Hot-s	pots of biodiversity	- Threats to		
biodiversity: habitat loss - Endangere	d and endemic specie	es of India –		
Conservation of biodiversity: In-situ and	Ex-situ conservation of	t biodiversity.		
Module – 4				
ENVIRONMENTAL POLLUTION	-			
Definition, Cause, effects and control m	easures of :		Hour	s –6
a. Air pollution				-
b. Water pollution				

c. Soil pollution
d. Noise pollution
e. Nuclear hazards
Solid waste Management: Causes, effects and control measures of urban and
industrial wastes - Role of an individual in prevention of pollution.
Module – 5
SOCIAL ISSUES AND THE ENVIRONMENT
Urban problems related to energy -Water conservation, rain water harvesting,
Resettlement and rehabilitation of people its problems and concerns.
Environment Protection Act - Air (Prevention and Control of Pollution) Act.
– Water (Prevention and control of Pollution) Act -Wildlife Protection Act -
Forest Conservation Act .
COURSE OUTCOMES:
On completion of the course student will be able to
1. Obtain knowledge on global warming & climate change - Acid rains, ozone layer
depletion.
2. Preserve several natural resources
3. Summarize the concept of ecosystem
4. Control different types of pollution
5. Understand social issues and environmental legislation
QUESTION PAPER PATTERN:
All questions should be answered, each question carries 14 marks
TEXT BOOKS:
1. E. Bharucha (2003), "Environmental Studies", University Publishing Company,
New Delhi.
2. J.G. Henry and G.W. Heinke (2004), "Environmental Science and Engineering",
Second Edition. Prentice Hall of India, New Delhi.
3 G M Masters (2004)" Introduction to Environmental Engineering and Science"
5. G.M. Masters (2004) Introduction to Environmental Engineering and Science,
KEFEKENCE BUUKS:
1. Text Book of Environmental Studies by Deeksha Dave & P. Udaya Bhaskar,
Cengage Learning.
2. Environmental Studies by K.V.S.G. Murali Krishna, VGS Publishers, Vijayawada.
3. Environmental Studies, P.N. Palaniswamy, P. Manikandan, A. Geeta and K.

Manjula Rani, Pearson Education, Chennai.

COURSE OUTCOMES TO PROGRAM OUTCOMES MAPPING:

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
1	-	-	-	-	-	-	3	-	-	-	-	-	-	-	-
2	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-
5	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-
Course	2	3	2	-	-	-	2	-	-	-	-	-	-	-	-

<u>Course Structure and detailed syllabus of II B. Tech, I semester, AI&ML,</u> <u>under the regulations of SITE-21</u>

Course Structure for II B. Tech, AIML Under the Regulations of SITE-21									
	Semester -III								
S.No	Subjec t Code	Course Code	Course	L	Т	Р	С		
1	BS	21AMMAT3010	Probability and statistics	3	0	0	3		
2	PC	21AMAMT3020	Foundations of Artificial Intelligence	3	0	0	3		
3	PC	21AMAMT3030	Database Management Systems	3	0	0	3		
4	PC	21AMAMT3040	Operating Systems	3	0	0	3		
5	PC	21AMAMT3050	Analog & Digital Electronics	3	0	0	3		
6	PC	21AMAML3060	Artificial Intelligence Lab	0	0	3	1.5		
7	PC	21AMAML3070	Operating Systems Lab	0	0	3	1.5		
8	PC	21AMAML3080	Database Management Systems Lab	0	0	3	1.5		
9	SOC	21AMASC3090	Python for Data Science 1 0 2		2	2			
10	MC	21CMBIN3100	MC: Biology for Engineers	3	0	0	0		
			TOTAL				21.5		

PROBA	ABILITY AND ST	ATISTICS			
(AI & ML)					
Subject Code	21 AMAMT3010	Internal Marka	20		
Number of Lesture Hours/Week	211101113010	External Marks	30		
Number of Lecture Hours/ week	5	External Marks	/0		
Total Number of Lecture Hours	50 Dete Streeterree	Exam Hours	$\frac{3}{12}$		
Correction of the second secon	Data Structures		Creans -3.0		
 concepts of data science a squares the concept of a random v Analyze various statistical distribution suitable for th Analyze various statistical Develop a framework for Population Parameters. 	ariable, generating f measures of a few given data from it measures of a few testing of hypothesi	nonlinear curve using meth functions and their propert discrete distributions the c s moments continuous distributions s in giving inferences abou	nod of least ies ontinuous 1t		
Study Queuing models and	d their Characteristi	cs.			
Unit-1			Hours		
Introduction, Population vs Samp data, Type of variables: depe Continuous variables, Data visu Measures of Variability (spread o Correlation: Definition, Karl Pea correlation coefficient, Rank C correlation coefficient (without pr Regression Analysis: Regressio properties (without proofs). Curve fitting: Method of least S Parabola	le, Collection of dat endent and indepe- ualization, Measure r variance), Skewne arson's Coefficient of Correlation, Spearm coofs). n Lines, Regressio quares, fitting of a	a, primary and secondary endent Categorical and es of Central tendency, ess, Kurtosis of Correlation, Limits for nan's formula for rank n Coefficients and their Straight line, Fitting of a	10		
Random Variables and Probability Probability (no questions will be variable, Distribution function, Pro- Random Variable, Probability Ma Continuous Random Variable, Distribution Function. Introduction functions. Mathematical Expectation: M Variable, Expected Value of for Theorem and Multiplication T Statistical Measures like Mean, V of Expectations. Generating functions: Moment and Probability generating Function	ity functions: Revie be set on review). operties of Distribut ass Function, Discre Probability Density n to Joint random va Mathematical Expe- unction of a Rando heorem of Expect Variance, Moments generating Function on of a Random Va	ew of basic concepts of Definition of a random ion Function, 20 Discrete the Distribution Function, y Function, Continuous ariable and its Probability extation of a Random lom Variable, Addition ration (without proofs), and Covariance in terms a, Characteristic Function riable.	10		
Unit-3			4.5		
Discrete and Continuous Distril	butions:		10		

Discrete Distributions: Binomial distribution and Poisson distribution - Definition, Mean, Variance, moments, m.g.f., Characteristic function, p.g.f., Fitting of distributions.	
Normal Variate, Mean, Variance, m.g.f., Characteristic function, Applications of Normal Distribution, Importance of Normal distribution. Exponential	
Exponential distribution	
Unit-4	
Sampling theory and Testing of Hypothesis:	
 Sampling Theory: Sample, population, statistic, parameter, Sampling distribution, standard error, point and interval estimation. Testing of Hypothesis: Formulation of Null hypothesis, Alternative hypothesis, Critical region, level of significance, Errors in sampling- Type-I-error, Type-II-error, One-tailed and Two-tailed tests Degrees of freedom. Large Sample Theory: Test of significance of single sample proportion, Test of significance for difference of proportions. Small Sample Theory: Student's-t-distribution: definition, t-test for single mean, t-test for difference of means, Paired t-test for difference of means. F-distribution: definition, F-test for equality of two population variances. Chi-square distribution: definition, Chi-square test for goodness of fit. 	10
Unit-5	
Queuing Theory: Queue description, Birth and Death Process, Distribution of Inter- arrival times, Distribution of service times, Kendall's representation of a queuing model, Operating characteristics of a queuing model, steady-state solutions of $\{M/M/1: \infty/FCFS\}$ Model and $\{M/M/1; N/FCFS\}$ Model.	10
Course outcomes:	
On completion of the course student will be able to:	
• Understand the concepts of data science and fit a best suitable curve for the g	iven data.
• Identify the random variable as discrete/continuous and analyze it.	
• Predict the discrete distribution suitable for the given data from its moments.	
• Predict the continuous distribution suitable for the given data from its momen	ts
• Decide the test applicable for giving inference about Population Parameter bas	ed on Sample

Text Books:

statistic.

- 1. Fundamentals of Mathematical Statistics by S.C.Gupta and V.K.Kapoor, Sultan Chand & Sons Publishers.
- 2. Probability, Statistics and Random Processes by T.Veerarajan, Tata Mc Graw Hill Pub.
- 3. Operations Research by S D Sharma, Khanna publications.

Reference Books:

- 1. Probability & Statistics with Reliability, Queueing and Computer Applications by Kishore.S.Trivedi,Prentice Hall of India, 1999.
- 2. Probability and statistics for Engineers, Miller and Freund, 7th edition, Prentice-Hall India.

Found	ations of Artificial l	Intelligence	
	(AI & ML)	8	
Subject Code	SEMESTER III	Internal Marka	20
Subject Code	21AMAN115020 2	Internal Warks	50
Hours/Week	5	External Marks	70
Total Number of Lecture Hours	50	Exom Hours	2
Dre requisite	JU Data Strevatures		$\frac{3}{2}$
Course objectives:	Data Structures		Creans -5.0
Enable the students to			
Gain a historical perspective	e of AI and characterist	tics of intelligent agents.	
Become familiar with basic	principles of AI towar	d problem solving.	
Know approaches of inferen	ice, perception, knowle	edge representation, and lear	ming.
Unit-1			Hours
Introduction: Foundations of AI	, History of AI, I A	AI problems, Agents and	
Environments, intelligent agent -Typ	bes of agents, Structure	e, Problem solving agents,	
AI programming languages, Introd	luction to LISP and F	PROLOG, AI Techniques,	10
advantages, and limitations of AI, I	mpact and Examples o	f AI, Application domains	
of Al.			
Unit-2			
Searching Lechniques: Problem Sp	aces, Uninformed seal	ch strategies, Breadth first	
search, Uniform cost search, Depth	nist search, Depth In	h Stratagios A* Houristic	10
function Hill Climbing Simulated	Annealing Construction	g Search Trees Stochastic	10
Search, A* Search Implementation.	Minimax Search. Alph	a-Beta Pruning.	
Unit-3	,,,,		
Knowledge Representation : K	nowledge based age	nt, The Wumpus world	
environment, Propositional logic ,I	nference rules, First	-order logic : Syntax and	
semantics, Situation calculus - Build	ling a knowledge base	, Electronic circuit domain	10
, Ontological Engineering, Forwar	d and backward cha	ining, Resolution, Truth	
maintenance system.			
Unit-4			
Planning and Uncertainty: Plann	ing, Representation of	of planning, Partial order	
planning, logic based planning, Li	near planning using a	a goal stack, Means-ends	10
world Acting under uncertainty	Bayes rules Semant	ics of Belief networks	10
Inference in Belief networks	Dayes Tures, Seman	ies of benef networks,	
Unit-5			
Learning: Learning from observati	on, Rote Learning. Le	arning by Taking Advice.	
Learning in Problem Solving, Wi	inston's Learning Pro	gram Inductive learning,	10
Decision trees, Explanation based lea	arning - Statistical Lear	ning methods, Case Study:	10
Chat bot System.			
Course outcomes:			
On completion of the course studen	t will be able to:	1 7 . 11	
1. Enumerate the history and for	oundations of Artificia	l Intelligence.	
2. Understand and implement of 3. Popresent a problem using f	interent search strateg	les	
4 Apply the Baye's rule to sol	ve the problem	positional logic.	
5. Analyze the different learning	ig systems to solve a g	iven problem.	
Text Books:	<u> </u>	r	
1. Stuart J.Russel, Peter Norv	ig, "Artificial Intellig	ence a Modern Approach",	3 rd Edition,
Pearson Education, 2009.	- 0		
2. Elaine Rich, Kevin Knight,	"Artificial Intelligence	", 3 rd Edition, Tata McGraw	Hill, 2009.

3. Artificial intelligence, structures and Strategies for Complex problem solving, George F Lugar, 5th edition, PEA.

Reference Books:

- 1. M.Tim Jones, "Artificial Intelligence: A Systems Approach (Computer Science)", Jones and Bartlett Publishers, Inc., 1st Edition, 2008.
- 2. David L. Poole and Alan K. Mackworth, "Artificial Intelligence: Foundations of Computational Agents", 2nd Edition, Cambridge University Press, 2010.
- 3. Wolfgang Ertel, "Introduction to Artificial Intelligence", 1st Edition, Springer, 2017.

- 1. https://onlinecourses.nptel.ac.in/noc21_ge20/preview
- 2. https://www.cs.cornell.edu/courses/cs4700/2013fa/slides/CS4700-Intro_part1_v5.pdf

DATABASE MANAGEMENT SYSTEMS (AI & ML)					
SEMESTER III					
Subject Code	21AMAMT3030	Internal Marks	30		
Number of Lecture	3	External Marks	70		
Hours/Week		External Marks	10		
Total Number of Lecture Hours	50	Exam Hours	3		
Pre-requisite	Data Structures		Credits -3.0		

Course Objectives:

The learning objectives of this course are:

- 1. To introduce about database management systems
- 2. To give a good formal foundation on the relational model of data and usage of Relational Algebra
- 3. To introduce the concepts of basic SQL as a universal Database language
- To demonstrate the principles behind systematic database design approaches bycovering conceptual design, logical design through normalization
- 5. To provide an overview of database transactions and concurrency control.

Unit-1: Database system architecture	Hours
Introduction to Databases: Characteristics of the Database Approach, Advantages of using the DBMS Approach, A Brief History of Database Applications. Overview of Database Languages and Architectures: Data Models, Schemas and Instances, Three-Schema Architecture and Data Independence, Database Users, Architecture for DBMS.	10
Unit-2: E-R Models	
The E-R Models, The Relational Model, Introduction to Database Design, Database Design and Er Diagrams, Entities Attributes, and Entity Sets, Relationship and Relationship Sets, Conceptual Design with the Er Models, The Relational Model Integrity Constraints Over Relations, KeyConstraints, Foreign Key Constraints, General Constraints.	10
Unit-3: Relational Algebra	
Relational Algebra, Selection and Projection, Set Operation, Renaming, Joins, Division, More Examples of Queries, Relational Calculus: Tuple Relational Calculus, Domain Relational Calculus. The Form of Basic SQL Query, Union, Intersect, and Except, Nested Queries, Aggregate Operators, Null Values, Complex Integrity Constraints in SQL, Triggers and Active Database.	10
Unit-4: Normalization	
Purpose of Normalization or schema refinement, concept of functional	10

dependency, normal forms basedon functional dependency (1NF, 2NF and 3	
NF), concept of surrogate key, Boyce-Codd normal form (BCNF), Lossless	
join and dependency preserving decomposition, Fourth normal form(4NF).	
Unit-5: Transaction Management	
Transaction, properties of transactions, transaction log, and transaction management with SQL using commit rollback and save point. Concurrency control for lost updates, Uncommitted data, inconsistent retrievals and the Scheduler. Concurrency control with locking methods, lock granularity, lock types, twophase locking for ensuring serializability, deadlocks, Concurrency control with time stamp ordering: Wait/Die and Wound/Wait Schemes, Database Recovery management	10

Course outcomes:

By the end of the course, the student will be able to

- 1. Understand the basic elements of a relational database management system.
- 2. Draw entity relationship and convert entity relationship diagrams into RDBMS
- 3. Create, maintain, and manipulate a relational database using SQL.
- 4. Designs and applies normalization techniques for logical schema model.
- 5. Solves concurrent issues and problems through locking mechanism.

Text Books:

1. Introduction to Database Systems, CJ Date, Pearson

2. Database Management Systems, 3rd Edition, Raghurama Krishnan, Johannes Gehrke, TATA McGrawHill.

- 3. Database Systems The Complete Book, H G Molina, J D Ullman, J Widom Pearson
- 4. Database Management Systems,6/e Ramez Elmasri, Shamkant B. Navathe, PEA
- 1. Data base Systems design, Implementation, and Management, 7th Edition, Peter Rob & Carlos Coronel
- 2. Database System Concepts, 5th edition, Silberschatz, Korth, TMH
- 3. The Database Book Principles & Practice Using Oracle/MySQL, Narain Gehani, University Press.

- 1. <u>https://onlinecourses.nptel.ac.in/noc21_ge20/preview</u>
- 2. https://www.cs.cornell.edu/courses/cs4700/2013fa/slides/CS4700-Intro_part1_v5.pdf

OPERATING SYSTEMS				
Subject Code	21AMAMT3040	IA Marks	30	
Number of Lecture Hours/Week	of Lecture Hours/Week 3 Exam Marks		70	
Total Number of Lecture Hours	50	Exam Hours	03	
	Credits – 03			
Unit -1: Operating Systems Over	view		Hours	
Computer system organization, Operating system structure, Process, memory, storage management, Protection and security, Distributed systems, Computing Environments, Open-source operating systems, OS services, User operating-system interface.		08		
Unit -2: System Calls & IPC		·		
System calls, Types, System programs, OS structure, OS generation, System Boot Process concept, scheduling (Operations on processes, Cooperating processes, Inter-process communication), Multi-threading models.			10	
Unit – 3: Process Management				
Basic concepts, Scheduling criteria, Scheduling algorithms, Thread scheduling, Multiple processor scheduling Operating system, Algorithm Evaluation, The critical section problem, Peterson's solution, Synchronization hardware, Semaphores, Classic problems of synchronization, Critical regions, Monitors.			10	
Unit – 4: Memory Management & Dead lock				
System model, Deadlock characterization, Methods for handling deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock detection, Recovery from deadlock. Storage Management: Swapping, Contiguous memory allocation, Paging, Segmentation Virtual Memory Background, Demand paging, copy on write, Page replacement and various Page replacement algorithms, Allocation of frames, Thrashing.		10		
Unit – 5: I/O Systems				
File concept, Access methods, I Protection, Directory implemen management, Disk scheduling, Di Protection.	Directory structure, File-system ntation, Allocation methods, isk management, Swap-space m	mounting, Free-space nanagement,	12	

Text	(T) / Reference(R) Books:
T1	Operating System Concepts Essentials, Abraham Silberschatz, Peter B. Galvin,
	Greg Gagne, John Wiley & Sons Inc., 2010.
T2	Operating System Concepts, 9th Edition, Abraham Silberschatz, Peter Baer Galvin
	and Greg Gagne, John Wiley and Sons Inc., 2012
T3	Operating Systems, Second Edition, S Halder, Alex A Aravind, Pearson Education,
	2016

T4	Operating Systems – Internals and Design Principles, 7th Edition, William
	Stallings, Prentice Hall, 2011
R1	Modern Operating Systems, Second Edition, Andrew S. Tanenbaum, Addison
	Wesley, 2001.
R2	Operating Systems: A Design-Oriented Approach, Charles Crowley, Tata McGraw
	Hill Education, 1996.
R3	Operating Systems: A Concept-based Approach, Second Edition, D M Dhamdhere,
	Tata McGraw-Hill Education, 2007
R4	Operating Systems: Internals and Design Principles, Seventh Edition, William
	Stallings, Prentice Hall, 2011
W1	https://www.coursera.org/courses?query=operating%20system
W2	https://onlinecourses.nptel.ac.in/noc16_cs10/preview

Cours	se Outcomes: On completion of this course, students can
CO1	Design various Scheduling algorithms, Apply the principles of concurrency.
CO2	Design deadlock, prevention and avoidance algorithms.
CO3	Compare and contrast various memory management schemes.
CO4	Design and Implement a prototype file system, Perform administrative tasks on
	Linux Servers.
CO5	Introduction to Android Operating System Internals.

ANALOG AND DIGITAL ELECTRONICS			
Subject Code	21AMAMT3050	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 0	3	1
Course Objectives: This course will enable the studen	ts to:		
 Introduce components such a Understand of various types Learn basic fundamentals for 	as diodes, BJTs and FE of amplifier circuits r the simplifications an	Ts and know the appli d design of digital circ	cations cuits.
• Understand the concepts of C	Combinational and Seq	uential logic circuits	
	Unit -1		
Diodes and Applications: Semi-conductors, Intrinsic and extrins Biased p-n junction, p-n junction diod diode resistance, diffusion capaci diode as a rectifier, Zener diode, p wave rectifier, Full wave rectifier.	sic semiconductors, Oper de, V-I characteristics, o tance, diode switching hoto diode, LED. Diod rectifiers with capacit	n circuited p-n junction, effect of temperature, g times, p-n junction le Applications - Half or filter.	Hours –11
	Unit -2		
Bipolar Junction transistors: Transistor characteristics: The junction transistor, transistor current components, CB, CE, CC configurations, comparison of transistor configurations, the operating point, self-bias or Emitter bias, bias compensation, thermal runaway and stability, transistor at low frequencies, transistor as an amplifier, CE amplifier response, gain bandwidth product, Emitter follower, RC coupled amplifier		Hours –11	
	Unit – 3		
Field Effect Transistors: FETs: Construction of JFET construction, NMOS, PMOS and (Digital Circuits: Number systems, 2's and 1's comp Boolean Algebra, Canonical and S	C, V-I characteristic CMOS Inverter. plements, Basic Theore Standard Forms, Digita	ers, MOSFET-Basic ems and Properties of l Logic Gates.	Hours – 9
	Unit – 4		
Combinational Logic Circuits: The Map Method, Don't-Care Conditions, Binary Adder-Subtractor, Decimal Adder, Magnitude Comparator, Decoders, Encoders, Multiplexers.		Hours – 10	
Unit – 5			
Sequential Logic Design: Operation of NAND & NOR Latches and flip- flops; Conversion of flip- flops. Design of ripple counters, design of synchronous counters, Johnson counter, ring counter. Design of registers - shift register, universal shift, register.		Hours – 9	
	Total		50
Course outcomes: On completion of the course stude	ent will be able to:		

- 1. Understand the characteristics and utilization of various components.
- 2. Understand and analyze the BJT and MOSFET
- 3. Apply the Boolean algebra to optimize the logic functions using K-maps and Understand the field effect transistors
- 4. To design and analyze combinational logic circuits
- 5. To design and analyze sequential logic circuits.

Text Books:

- 1. A.S. Sedra&K.C.Smith, Microelectronics Circuits, Oxford University Press, 3rd edition, 1997.
- 2. Morris Mano, Michael D Ciletti, "Digital Design", 4thEdition, PEA
- 3. R.P. Jain, "Modern Digital Electronics", Tata McGraw-Hill, 4th edition, 2008.

Reference Books:

- 1. M. S. Tyagi, Introduction to Semiconductor Materials and Devices, John Wiley & Sons
- 2. J.F. Wakerly, "Digital Design Principles", 4th edition, Pearson Education, 2005

Artificial Intelligence Laboratory (AI & ML)				
Subject Code	SEMESTER III	Internal Marks	15	
Number of Lecture	21AMAML5000		15	
Hours/Week	-	External Marks	35	
Total Number of Lecture Hours	48	Exam Hours	3	
Pre-requisite	Data Structures		Credits -3.0	
 Enable the students to Study the concepts of Art. Learn the methods of solv Introduce the concepts of 	ificial Intelligence ring problems using machine learning	Artificial Intelligence		
1. Study of Prolog.				
2. Write simple facts for the follo	owing:			
a. Ram likes mango. b. See	ma is a girl. c. Bill li	kes Cindy. d. Rose is		
red. e. John owns gold.				
3. Write predicates One convert	s centigrade temper	atures to Fahrenheit, the		
other checks if a temperature	is below freezing.			
4. Write a program to solve the I	Monkey Banana prol	olem.		
5. Write a program in turbo p	rolog for medical	diagnosis and show the		
advantage and disadvantages	of green and red cuts	8.		
6. Write a program to implement	t factorial, Fibonacci	of a given number.		
7. Write a program to solve the ²	1-Queen problem.			
8. Write a program to solve the t	raveling salesman p	roblems.		
9. Write a program to solve the v	water jug problem us	ing PROLOG.		
10. Implementation of A* using I	PROLOG			
Course Outcomes: At the end of	the practical course	the student will be able to	:	
1. Identify problems that are	amenable to solutio	n by AI methods.		
2. Identify appropriate AI m	ethods to solve give	n problem.		
3. Use language framework	of different AI meth	ods for solving problems.		
4. Implement basic AI algor	ithms.			
5. Design and carry out an e	mpirical evaluation	of different algorithms on	the Problem	
formalization, and state th	e conclusions that the	ne evaluation Supports.		

	Python for Data Scie	ence			
	(AI & ML)				
	SEMESTER III				
Subject Code	21AMAMC3090	Internal Marks	15		
Number of Lecture Hours/Week	1L +2P	External Marks	35		
Total Number of Lecture Hours	otal Number of Lecture Hours48Exam Hours3				
Pre-requisite			Credits -2.0		
Course objectives: On successful co	mpletion of this cours	e, Student will be able to:			
2. Apply statistical methods to imple	ment functionalities in	Numpy, Scipy, Pandas packa	ages.		
3. Analyze the significance of Inferer	tial Statistics.		C		
4. Apply Exploratory Data Analytica	l Techniques to visual	ize parameters.			
5. Onderstand the concepts of machin	le learning concepts to	o anaryze Data.			
List of Exporimonts					
List of Experiments					
1. Working with Numpy arrays					
2. Working with Pandas data fra	2. Working with Pandas data frames				
3. Basic plots using Matplotlib	3. Basic plots using Matplotlib				
4. Frequency distributions	4. Frequency distributions				
5. Averages					
6. Variability					
7. Normal curves					
8. Correlation and scatter plots					
9. Correlation coefficient					
10. Regression					
Course outcomes:					
1. Describe common Excel func	tionality and features	used for data science			
2. Analyze and construct the data Visualization					
3. Configure the programming environment					
4. Analyze real time data set 5. Implement Pivot tables and I OOKUP functions					
1. Text Books: 1. EMC Education	on Services "Data Scie	ence and Big Data Analytics:	Discovering,		
Analyzing, Visualizing and Presenting Data", Wiley Publishers, 2012.					
2. 2. Cathy O'Neil and Rachel Schutt, "Doing Data Science", O'Reilly, 2015.					

3. 3. Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques, 3rd ed

BIOLOGY FOR ENGINEERS				
Semester III				
Subject Code	21AMBIN3100	IA M	arks	30
Number of Lecture Hours/Week	3	Exam N	Marks	70
Total Number of Lecture Hours	50	Exam 1	Hours	03
Course T	ype: MC, Credits – 00			
Course Objectives: Students should be	e able to:			
1. Convey that Biology is as importan	t as scientific discipline as Ma	thematics,	, Physics	8
and Chemistry				
2. Convey that classification per se is	not what biology is all about.	The under	lying	
criterion, such as morphological, bi	ochemical or ecological be hi	ghlighted.		
3. Convey that "Genetics is to biology	what Newton's laws are to Pl	nysical Sci	ences"	
4. Convey that all forms of life have th	e same building blocks and ye	t the man	testation	IS
5 Convoy that without cotalysis life y	yould not have avisted on cart	h		
5. Convey that without catalysis me w	ding genetic information is up	ll ivoral		
7 Analyse biological processes at the	reduction its level	1001541		
7. Analyse biological processes at the 8 The fundamental principles of ener	reduction its level	nhysical	and	
biological world	gy transactions are the same in	i pirysicai	anu	
Unit _1 Int	traduction		Teach	ning
	nouction		Ho	urs
Bring out the fundamental differences	between science and engine	ering by		
drawing a comparison between eye a	nd camera, Bird flying and	aircraft.		
Mention the most exciting aspect of	biology as an independent	scientific	Hour	s – 8
discipline. Why we need to study biolog	y. How biological observation	s of 18th		
Century that lead to major discoveries.	Examples from Brownian mo	otion and		
the origin of thermodynamics by referrin	ig to the original observation of	of Robert		
Brown and Julius Mayor.				
Unit	t -2 Classification			
Hierarchy of life forms at phenomenolo	gical level- classification base	ed on (a)		
cellularity - Unicellular or multicellula	ar (b) ultra structure- proka	yotes or		
eucaryotes. (c) energy and Carbon u	itilization -Autotrophs, heter	rotrophy,		
lithotropes (d) Ammonia excretion -	aminotelic, uricoteliec, urec	otelic (e)	Hour	s – 8
Habitata- acquatic or terrestrial (e) Mole	cular taxonomy- three major k	ingdoms		
of life. Model organisms for the study o	f biology come from differen	t groups.		
E. Coli, S.cerevisiae, D. Melanogaster, G	C. elegance, A. Thaliana, M. N	Ausculus		
Unit – 3 G	enetics & Biomolecules			
Mendel's laws, Concept of segregation	and independent assortment.	Concept		
of allele. Gene mapping, Gene interact	tion, Epistasis. Meiosis and M	litosis be		
taught as a part of genetics. Emphasis	to be give not to the mechani	cs of cell		
division nor the phases but how ge	netic material passes from j	parent to	TT	- 10
offspring. Concepts of recessiveness an	nd dominance. Concept of ma	apping of	Hour	s-12
phenotype to genes. Discuss about t	he single gene disorders in	humans.		
Discuss the concept of complementatio	n using human genetics.	_		
Molecules of life: Monomeric units an	nd polymeric structures. Discu	iss about		
sugars, starch and cellulose. Amino	acids and proteins. Nucleotid	es and		
DNA/RNA. Two car	rbon units and lipids.			

Unit – 4 Enzymes & Proteins	
 Enzymology: How to monitor enzyme catalyzed reactions. How does an enzyme catalyze reactions - Enzyme classification. Mechanism of enzyme actionexamples. Enzyme kinetics and kinetic parameters. Why should we know these parameters to understand biology? RNA catalysis. Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. Information Transfer: The molecular basis of coding and decoding genetic information is universal Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosides. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination Unit – 5 Microbiology & Metabolism Thermodynamics as applied to biological systems - Exothermic and endothermic versus undergone and exergoinc reactions. Concept of Keq and its relation to standard free energy - Spontaneity - ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological 	Hours–12 Hours–10
aspects of single celled organisms. Sterilization and media compositions. Growth kinetics	
 Course outcomes: Students will be able to 1. Describe how biological observations of 18th Century that lead to major of 2. Convey that classification per se is not what biology is all about but highlight the underlying criteria, such as morphological, biochemical and ecologica 3. Highlight the concepts of recessiveness and dominance during the passage of genetic material from parent to offspring 4. Convey that all forms of life have the same building blocks and yet the man are as diverse as one can imagine 5. Classifyenzymesanddistinguishbetweendifferentmechanismsofenzym 6. Convey that "Genetics is to biology what Newton's laws are to Physical 	liscoveries. ht l of ifestations eaction. Sciences"
 6. Convey that "Genetics is to biology what Newton's laws are to Physical Sciences" Question paper pattern: Section A: This section contains ten one- or two-line answer questions carrying 1 mark each. Two questions from each unit will be set. Section B: This Section will have 05 questions with internal choice. Each full question carries 12marks. Each full question comprises sub question covering all topics under a unit	

TEXT BOOKS

- 1. Biology: A global approach: Campbell, N. A.; Reece, J. B.; Urry, Lisa; Cain, M, L.; Wasserman, S. A.; Minorsky, P. V.; Jackson, R. B. Pearson EducationLtd
- 2. Outlines of Biochemistry, Conn, E.E; Stumpf, P.K; Bruening, G; Doi, R.H., John Wiley and Sons
- 3. Microbiology, Prescott, L.M J.P. Harley and C.A. Klein 1995. 2nd edition Wm, C. Brown Publishers

REFERENCES

- 1. Principles of Biochemistry (V Edition), By Nelson, D. L.; and Cox, M. M.W.H. Freeman and Company
- 2. Molecular Genetics (Second edition), Stent, G. S.; and Calender, R.W.H. Freeman and company, Distributed by Satish Kumar Jain for CBS Publisher

Course Structure and detailed syllabus of II B. Tech, II semester, AI&ML, under the regulations of SITE-21

Cour	Course Structure for II B. Tech, II Semester, AIML, Under the Regulations of SITE- 21						
			Semester -IV				
S.No	Subjec t Code	Course Code	Course	L	Т	Р	C
1	BS	21AMMAT401 0	Discrete Mathematics	3	0	0	3
2	PC	21AMAMT402 0	Introduction to Machine Learning	3	0	0	3
3	PC	21AMAMT403 0	Design and Analysis of Algorithms	3	0	0	3
4	ES	21AMAMT404 0	Java Programming	3	0	0	3
5	PC	21AMAMT405 0	Optimization Techniques for AI	3	0	0	3
6	PC	21AMAML406 0	Machine Learning Lab	0	0	3	1.5
7	PC	21AMAML407 0	Design and Analysis of Algorithms Lab	0	0	3	1.5
8	ES	21AMAML408 0	Java Programming Lab	0	0	3	1.5
9 SOC 21AMAMC409 SOC: Fundamentals of Programming 0 and Simulation using MATLAB 1 0				0	2	2	
TOTAL 21.5							
Interns	Internship 2 Months (Mandatory) during summer vacation						

DISCRETE MATHEMATICS					
(Syllabus for	the academic year 202	2 -2023)			
S	EMESTER - II/II	,			
Subject Code	21AMMAT4010	IA Marks	30		
Number of Lecture Hours/Week	3	Exam Marks	70		
Total Number of Lecture Hours	48	Exam Hours	03		
	Credits – 03				
Course Objectives:					
To analyze natural language argum	ents by means of symbo	ic propositional logic			
To Identify and manipulate basic m	athematical objects such	as sets functions and	relations		
To use of basis theorems in number	theory to solve expense	tiol mohlema	relations.		
To use of basic theorems in humber	theory to solve exponent	itiai problems.			
• To solve recurrence relations by usi	ing different methods.				
• To Apply graph theory concepts to	solve real-time problem	8.			
Unit -1					
Mathematical Logic (TB1: Page Number	1 to 72)				
Propositional Calculus: Statements and N	otations, Connectives, W	Vell Formed			
Formulas, Truth Tables, and Tautologies, E	quivalence of Formulas,	Duality Law,			
Tautological Implications, and Normal For	ms. Theory of Inference	for Statement	Hours –10		
Calculus, Consistency of Premises and Indi	rect Method of Proof.	1 . T			
Predicate Calculus (TBI: Page Number 7	(9 to 99): Predicates, Pre	edicate Logic,			
Statement Functions, Variables and Quantif	ters, Free and Bound Va	riables, Inference			
Theory for Predicate Calculus.					
Unit -2					
Set Theory:					
Sets (TB1: Page Number 104 to 123): Operations on Sets, Principle of Inclusion-					
Exclusion, Deletions (TD2: Deve Nemeber 440 to 472): Deverting Operation Devicing and Up					
Relations (TB2: Page Number 449 to 473): Properties, Operations, Partition and F			Hours -10		
Covering, Transitive Closure, Equivalence, Compatibility and Partial Ordering, Hasse					
Diagrams, Eurotiana (TD1: Daga Number 102 to 22	1). Diinstine Commeniti	an Income			
Functions (TB1: Page Number 192 to 232): Bijective, Composition, Inverse,					
Permutation, and Recursive Functions.					
Unit – 3					
Combinatorics and Number Theory .					
Number Theory (TB2: Page Number 23/	deen Algorithm Least C	ntegers, Division			
Theorem, Greatest Common Divisor, Euclid	ital Theorem of Arithme	tie Modular	Hours - 10		
Arithmetic Fermat's and Fuler's Theorems	(Proofs not required)	ile, Modulai	110013 - 10		
Combinatorics (TR2: Page Number 385 t	(110013 not required).	ing Permutations			
Permutations with Repetitions Circular and	Restricted Permutation	s Combinations			
Restricted Combinations.		s, comoniacións,			
Unit – 4					
Recurrence Relations (RB1: Page Number	er 237 to 305):				
Generating Functions. Function of Sequence	es. Partial Fractions. Cal	culating Coefficient			
of Generating Functions, Recurrence Relati	ons, and Formulation as	Recurrence	Hours – 08		
Relations, Solving Recurrence Relations by	Substitution and Generation	ating Functions,			
Method of Characteristic Roots.					
Unit – 5					
Graph Theory (TB2: Page Number 641 t	o 735)				
Introduction to Graphs, Sub graphs, Graph	Representations, Isomor	phic Graphs, Paths	Hanne 10		
and Circuits, Eulerian and Hamiltonian Gra	phs, Multigraphs, Bipar	ite and Planar	Hours – 10		
Graphs.					

Course outcomes:

At the end of the course student will be able to

- Analyze natural language arguments by means of symbolic propositional logic.
- Identify and manipulate basic mathematical objects such as sets, functions, and relations.
- Use of basic theorems in number theory to solve exponential problems.
- Solve recurrence relations by using different methods.
- Apply graph theory concepts to solve real-time problems.

Question paper pattern:

- 9. Question paper consists of 10 questions.
- 10. Each full question carrying 14 marks.
- 11. Each full question will have sub question covering all topics under a unit.

12. The student will have to answer 5 full questions selecting one full question from each unit.

Text Books:

- 1) Discrete Mathematical Structures with Applications to Computer Science, J. P. Tremblay and R. Manohar, Tata McGraw Hill.
- 2) Discrete Mathematics and its Applications with Combinatorics and Graph Theory, K. H. Rosen, 7th Edition, Tata McGraw Hill.

Reference Books:

- Discrete Mathematics for Computer Scientists and Mathematicians, J. L. Mott, A. Kandel and T. P. Baker, 2nd Edition, Prentice Hall of India.
- 2) Discrete Mathematical Structures, Bernand Kolman, Robert C. Busby and Sharon Cutler Ross, PHI.
- 3) Elements of Discrete Mathematics-A Computer Oriented Approach, C. L. Liu and D. P. Mohapatra, 3rdEdition, Tata McGraw Hill.

e-Resources:

https://nptel.ac.in/courses/106/106/106106094/

Introduction to Machine Learning			
	SEMESTER IV		
Subject Code	21AMAMT4020	Internal Marks	30
Number of Lecture Hours/Week	3	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	3
Pre-requisite	Data Structures		Credits -3.0
Course objectives:			
Enable the students to			
• Understand the concept of	machine learning		
Distinguish machine learn	ing techniques such	as decision tree learning,	Bayesian
learning etc.			
Understand computational	learning theory.		
Study the pattern comparis	son techniques.		
Unit-1			Hours
Introduction: Machine Learning	g, Definition, dataset	ts, Feature sets, Dataset	
division: test, train and validat	ion sets, cross vali	dation. Introduction to	10
Machine Learning Techniques: S	upervised Learning,	Unsupervised Learning	10
and Reinforcement Learning, Rea	l life examples of M	achine Learning.	
Unit-2			
Evaluation Hypotheses: Motiva	tion, estimation hyp	othesis accuracy, basics	
of sampling theory, a general approach for deriving confidence intervals,			
difference in error of two hypotheses, comparing learning algorithms, concept			
learning task, concept learning as	search, find-S: findi	ng a maximally specific	
hypothesis, version spaces and the	e candidate eliminati	on algorithm.	
Unit-3			
Supervised learning: Classifica	tion and Regression	n: K-Nearest Neighbor,	
Linear Regression, Logistic Reg	gression, Support V	ector Machine (SVM),	10
Evaluation Measures: SSE, MME, R2, confusion matrix, precision, recall, F-			10
Score, ROC-Curve.			
Unit-4			
Unsupervised learning: Introdu	action to clustering	, Types of Clustering:	
Hierarchical, Agglomerative Clu	stering and Divisiv	e clustering; Partitional	10
Clustering - K-means clustering.			
Unit-5			
Decision Tree Learning: Rej	presentation, approp	priate problems, basic	
decision tree learning algorithm, h	ypothesis space sear	ch, inductive bias, issues	
in decision tree learning.			
Bayesian learning: Maximum L	ikelihood and least so	quared error hypotheses,	10
maximum likelihood hypothese	es for predicting p	probabilities, minimum	
description length principle, Bay	es optimal classifier	, Gibs algorithm, Naïve	
Bayes classifier, an example:	learning to classify	text, Bayesian belief	
networks, and the EM algorithm.			

Course outcomes:
On completion of the course student will be able to:
• Understand the Machine learning principles and data sets
Analyze different Machine learning algorithms
• Analyze the supervised learning methods
A national superior data and the second s

- Analyze unsupervised learning methods Understand and Analyze the Decision Tree learning, Bayesian learning •

Text Books:

- 4. Machine Learning Tom M. Mitchell, MGH
- 5. Applied Machine Learning, M.Gopal, Mc Graw Hill Education

Reference Books:

- 3. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis
- 4. Machine Learning, The Art and Science of Algorithms that Make Sense of Data, Peter Flach, Cambridge press
- 5. Ethern Alpaydin, "Introduction to Machine Learning", MIT Press, 2004.

- 1. <u>https://www.deeplearning.ai/machine-learningyearning/</u>
- 2. https://nptel.ac.in/courses/106106139

	DESIGN AND	ANALYSIS OF ALGORITHMS SEMESTER IV	
Subject Code	21AMAMT40 30	Internal Marks	30
Number of Lecture Hours/Week	03	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
		Credits: 03	
Course Objective	es:		
This course will e	enable the students	to:	
Analyze the second	he asymptotic perf	ormance of algorithms.	
Write rigo	rous correctness p	roofs for algorithms.	
Demonstra	ate a familiarity w	ith major algorithms and data structures.	
Apply im	portant algorithmi	c design paradigms and methods of ana	lvsis.
Synthesize	e efficient algorith	in common engineering	
design situ	ations		
	U	nit -1	Hours
Elements of Dyn	amic Programmi	ng:	
Optimal sub str	ructure, overlappi	ng sub problems, Reconstructing an	
optimal solution,	Memorization. Ex	ample Problems:	
Longest common	n Subsequence, (Optimal Binary search trees, String	
Editing, 0/1 Knap	Sack Problem, Th	e Traveling Salesperson Problem,	
Elements of Gree	edy Strategy:	rty Optimal substructure Greedy vs	11
Dynamic program	ming. Example I	Problems: Huffman codes. Knap Sack	
Problems, Tree V	Vertex Splitting, Jo	bb Sequencing with Dead Lines.	
		Unit -2	
Back Tracking:			
Concept, State Sp	pace, Solution Spa	ace, free Organization of State Space	
and Solution Space	ce, illustration usii	ng 4-Queens Problem, Sum of Subsets	
Problems, Examp	pie Problems:	Creenb Coloring Hamiltonian Cycles	
0/1 Knap Sack Pr	n, Sum of Sub sets	, Oraph Coloring, Hammonian Cycles,	
Branch and Bou	nd:		00
Least Cost (LC)	Search, 15-Puzzle	Example, Control Abstraction for LC-	09
Search, Bounding	, FIFO Branch-an	d-Bound, LC-Branch-and -Bound,	
Example Problem	ms:		
U/I Knap Sack Pr	oblem, Traveling	Sales Person Problem	

Elementary Graph Algorithms:
Concepts, Representation of Graphs, Breadth First Search, Depth First
Search, Topological sort, Strongly Connected Components, Biconnected
Components. Articulation Points
Minimum Spanning Trees:
Growing Minimum Spanning Tree, Kruskal's Algorithm, Prim's
Algorithms, Single Source Shortest Paths:
Shortest Path, Edge Weights, Variants of Shortest Path Problems, Optimal
Sub Structure of Shortest Path Negative Edge Weights Cycles
Representing Shortest Paths, Relaxation, Properties of Shortest path and
Relaxation
All-Pairs Shortest Paths:
Concept, Shortest Path and Matrix Multiplication,
Shortest Path Algorithms:
Bellman Ford Algorithm, Dijkstra`s Algorithm, Floyd- Warshall
Algorithm.
Unit – 4
Computability of Algorithms:
Tractable and Intractable, Computability Classes – P, NP, NPC, NPH,
snowing problems to be NPC, Reductions, Tractable Problems:
Supporting arguments Abstract Problems Encodings
Polynomial Time Verification:
Hamiltonian Cycles, Verification Algorithms, Complexity class NP,
Reducibility ND Completeness Circuit Satisfiability Circuit
Satisfiability 10 Completeness, Cheun Satisfiability, Cheun 10
NP Completeness Proof.
Formula Satisfiability. 3CNF Satisfiability.
NP-Complete Problems:
Clique, Vertex-cover, Hamiltonian Cycle, Traveling-Salesman Problem,
Subset Sum Problem
Unit - 5
Approximation Algorithms:
Roles and Tunctions, Components, Structure, Operations, Load
Balancing Problem, CenterSelection Problem, Set Cover, Greedy
Heuristics, Randomized Algorithms:
Contention Resolution, Global Minimum Cut, Random Variables and 09
Their Expectations, A Randomized Approximation Algorithm for MAX 3-
SAT, Randomized Divide and Conquer: Median
COURSE OUTCOMES
On completion of the course student will able to:
1. Analyze worst-case running times of algorithms based on asymptotic analysis and
iustify the correctness of algorithms.
2. Describe the greedy paradigm and explain when an

algorithmic design situation calls for it. For a given problem develop the greedy algorithms.
3. Describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it.Synthesize divide-and-conquer algorithms. Derive and solve recurrence relation.
4. Describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for it.
5. For a given problems of dynamic programming on develop the dynamic programming.

5. For a given problems of dynamic-programming an develop the dynamic programming algorithms and analyze it to determine its computational complexity. For a given model engineering problem model it is using

graph and write the corresponding algorithm to solve the problems.

Text Books:

- 1. Interdiction to Algorithms, Third Edition, Thomas H Coremen, Charles E.Leiserson, Clifford Stein, MIT Press/McGraw-Hill.
- 2. Computer Algorithms, Ellis Horowitz, Sartaj Sahni, SRajasekaran, Computer Science Press

3. Algorithm Design, First Edition, JON Kleinberg, EVATardos, Pearson Addison Wesley **Reference Books**:

1. Algorithm Design: Foundation, analysis, and Internet Examples, First Edition, John Wiley & sons.

- 1. https://www.coursera.org/specializations/algorithms
- 2. https://swayam.gov.in/course/4417-design-and- analysis-of-algorithms

JA	VA PROGRAMMING SEMESTER IV		
Subject Code	21AMAMT4040	Internal Marks	30
Number of Lecture Hours/Week	3(L)	External Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
 Course Objectives: This course will enable the studer Understand fundamentals of execution, methods, etc. Understand fundamentals of classes, invoking methods, the Be aware of the important to Have the ability to write a comparison 	nts to: ² programming such as van ² object-oriented programm using class libraries, etc. opics and principles of so omputer program to solve	riables, conditional a ming in Java, includ ftware development e specified problem	and iterative ing defining t. s.
Unit -1: I	ntroduction to OOP		Hours
Introduction to Object Oriented Programming, Principles of Object-Oriented Languages, Procedural languages Vs OOP, History and Evolution of Java, Java VirtualMachine, Java Features, Program Structure, Variables, Primitive Data Types, Variables, Type Conversion and Casting, Operators, Control Statements Arrays String			08
Unit -2 · Introdu	icing Classes Methods a	and Inheritance	
Class Fundamentals, Declaring Objects, Reference Variables, Methods, Constructors, this keyword, Garbage Collection, finalize() method. Overloading Methods and Constructors, usage of static and final keywords, Command line arguments. Inheritance basics, using super, method overriding,			10
	1 Classes.		
Unit – 3: Package	s, Interfaces, Exception	Handling and I/O	
Packages, Access Protection, Interfaces, Exception Handling, Exception types, built in exceptions, user defined exceptions, using try, catch, throw, throws, finally, chained exceptions, assertions I/O Basics, reading console input and writing console output, Reading and Writing Files			10
Unit – 4: Mu	llti-Threading and java	util Package	
Java Thread Model, creating a f Inter Thread Communication, c collection classes, iterator, maps, comparators.	thread, Thread priorities, ollections overview, coll	Synchronization, lection interfaces,	10
Unit – 5: Introd	lucing GUI Programmi	ng with JavaFX	
JavaFX Basic Concepts, JavaFX Label, Button, Image, Image Vie Combo Box, Text Field, Scroll Pane, JavaFx Menus	Application Skeleton, ew, Radio Button, Chec JavaFX Event Handling	JavaFX, Control: kbox, List View,	12

COURSE OUTCOMES: On completion of the course student will able to: 1. Design classes, interfaces and packages. 2. Demonstrate inheritance, polymorphism, encapsulation. 3. Demonstrate user defined exceptions. 4. Create Threads to parallelize operations. 5. Create rich user-interface applications using modern APIJavaFX. Text Books: 1. The complete Reference Java, 9th edition, Herbert Scheldt, TMH. 2. Programming in JAVA, Sachin Malhotra, Saurabh Choudary, Oxford. Reference Books: 1. JAVA Programming, K Rajkumar, Pearson 2. Core JAVA, Black Book, Nageswara Rao, Wiley, Dream Tech 3. Core JAVA for Beginners, Rashmi Kanta Das, Vikas. Object Oriented Programming Through Java, P. Radha Krishna, Universities 4. Press. Web References: 1. https://www.edx.org/learn/java 2. https://onlineitguru.com/core-java-online-training- placement.html

OPTIMIZA	FION TECHNIQUES FO SEMESTER-IV	OR AI	
Subject Code	21AMAMT4050	IA Marks	30
Number of Lecture Hours/week	3L	Exam Mark	s 70
Total Number of Lecture Hours	53	Exam Hour	s 03
	Credits -03		
	Course Objectives:		
This course will enable student to:	Ŭ		
1. To define an objective function an	nd constraint functions in the	erms of design vari	ables,
and then state the optimization p	roblem.		
2. To state single variable and multi constraints.	variable optimization prob	olems, without and	with
3. To explain linear programming te	chnique to an optimization	problem, define sl	ack and
surplus variables, by using Simp	lex method.	. • •	. • •
4. To study and explain nonlinear pr	ogramming techniques, un	constrained or con	strained,
5 To introduce evolutionary program	nming techniques	inzation problems.	
5. To introduce evolutionary program	mining teeninques.		
	Unit-1		
Introduction and Classical Optimizat	tion Techniques:		
Statement of an Optimization problem,	design vector, design cons	straints, constraint	TT 10
surface, objective function, objecti	ve function surfaces,	classification of	Hours – 10
Optimization problems.			
U	Jnit – 2		
Classical Optimization Techniques			
Single variable Optimization, multi	variable Optimization wi	thout constraints,	
necessary and sufficient conditions	for minimum/maximu	m, multivariable	Hours – 10
Optimization with equality constraints.	Solution by method of Lag	range multipliers,	
muttivariable Optimization with mequa	inty constraints, Kunn, Tuc	cker conditions.	
Ľ	Jnit – 3		
Linear Programming			
Standard form of a linear programming	g problem, geometry of lin	ear programming	
problems, definitions and theorems, se	olution of a system of lir	ear simultaneous	Hours –10
equations, pivotal reduction of a gene	ral system of equations,	motivation to the	
simplex method, simplex algorithm, Du	ality in Linear		
Programming, Duai Simplex method.	Init A		
Nonlinear Programming:	1111 – 4		
Unconstrained cases One dimension	nal minimization method	s. Classification	
Fibonacci method and Quadratic interpo	plation method. Univariate	method. Powell's	
method and steepest descent method.			Hours – 10
Constrained cases , Characteristics of	a constrained problem, Cla	assification, Basic	
approach of Penalty Function method;	Basic approaches of Inte	erior and Exterior	
penalty function methods.	-		
U	Init – 5		

Introduction to Evolutionary Methods:	
Evolutionary programming methods, Introduction to Genetic Algorithms (GA)–	Hours – 13
Control parameters, Number of generation, population size, selection, reproduction,	
crossover and mutation, Operator selection criteria, Simple mapping of objective	
function to fitness function, constraints, Genetic algorithm steps, Stopping criteria –	
Simple examples.	
Course outcomes:	

Course outcomes:

On completion of the course student will be able to:

- 1. State and formulate the optimization problem, without and with constraints, by using design variables from an engineering design problem.
- 2. Apply classical optimization techniques to minimize or maximize a multi-variable objective function, without or with constraints, and arrive at an optimal solution.
- 3. Formulate a mathematical model and apply linear programming technique by using Simplex method. Also extend the concept of dual Simplex method for optimal solutions.
- 4. Apply gradient and non-gradient methods to nonlinear optimization problems and use interior or exterior penalty functions for the constraints to derive the optimal solutions.
- 5. Able to apply Genetic algorithms for solving Engineering problems.

Text Books:

- 1. "Engineering optimization: Theory and practice"-by S. S.Rao, New Age International (P) Limited, 3rd edition, 1998.
- 2. Soft Computing with Matlab Programming by N.P.Padhy&S.P.Simson, Oxford University Press 2015

Reference Books:

- 1. "Optimization methods in operations Research and Systems Analysis" by K.V.Mital and C.Mohan, New Age International (P) Limited, Publishers, 3rd edition, 1996.
- Genetic Algorithms in search, optimization, and Machine Learning by David E.Goldberg,ISBN:978-81-7758-829-3, Pearsonby Dorling Kindersley (India) Pvt. Ltd.
- 3. "Operations Research: An Introduction" by H.A.Taha, PHI pvt. Ltd., 6th edition.
- 4. Linear Programming by G.Hadley.

Machine Learning Laboratory (AI & ML) SEMESTER IV				
Subject Code	21AMAML4060	Internal Marks	15	
Number of Lecture	3	Enternal Marine	25	
Hours/Week		External Marks	35	
Total Number of Lecture Hours	48	Exam Hours	3	
Pre-requisite	Credits -1.5			
 Course objectives: Enable the students to Make use of Data sets in im Implement the machine lear choice. List of Experiments 	plementing the machir ning concepts and algo	ne learning algorithms prithms in any suitable langua	nge of	
 Study of Python Basic Libra Study of Python Libraries for 	ries such as Statistics,	Math, Numpy and Scipy.		
3. Implement and demonstrat	e the FIND-S algori	thm for finding the most		
specific hypothesis based or	a given set of training	g data samples.		
4. For a given set of training da	ata examples stored in	a .CSV file, implement and		
demonstrate the Candidate-I	Elimination algorithm			
5. Write a program to demons	trate the working of t	he decision tree based ID3		
algorithm	C			
6. Write a program to implement	nent the naïve Bayesi	an classifier for a sample		
training data set stored as a	.CSV file.	L.		
7. Assuming a set of document	s that need to be classif	fied, use the naïve Bayesian		
Classifier model to perform	this task	,		
8 Write a program to construct a Bayasian natwork considering medical data				
9 Apply FM algorithm to cluster a set of data stored in a CSV file				
2. Appry Elvi algorithm to cluster a set of data stored in a .C.S v file.				
iris data set.		ar argoriann to orasony the		
11. Implement the non-parame	tric Locally Weighted	d Regression algorithm in		
order to fit data points.		6 6		
12. Implement an algorithm to c	lemonstrate the signifi	cance of genetic algorithm		
Course Outcomes	2			
1. Understand the implementat	tion procedures for the	machine learning algorithms		
2. Design Java/Python program	ns for various Learning	g algorithms.		
3. Apply appropriate data sets	to the Machine Learni	ng algorithms		
4. Identify and apply Machine	Learning alsgorithms	to solve real world problems		

Design a	nd Analysis of Algorithr	ns Lab	
	SEMESTER IV		
Subject Code	21AMAML4070	Internal Marks	15
Number of Tutorial		External Marks	15
Hours/Week	03(P)		35
Total Number of Practice Hours	48	Exam Hours	03
	Credits – 1.5		
Course Objectives:			
This course will enable the students to	: mance of algorithms		
Write rigorous correctness pro	ofs for algorithms		
 Demonstrate a familiarity with 	maior algorithms and dat	astructures.	
Apply important algorithmic d	esign paradigms and meth	ods of analysis.	
Synthesize efficient algorithm	s in common engineering	design situations	
	LIST OF EXPER	RIMENTS:	
Exercise 1 (Dynamic Programming	Fechnique)		
a)	Longest common Subsec	quence	
b) D	evelop Optimal Binary se	arch trees	
Exercise 2 (Dynamic Programming	Technique)		
	a) 0/1 Knap Sack Proble	em,	
b) T	The Traveling Salesperson	Problem.	
Exercise 3 (Greedy Methods)			
	a) Huffman codes		
	b) Knap Sack Problem	18	
Exercise 4 (Greedy Methods)			
	a) Tree Vertex Splittin	ng	
b)	Job Sequencing with Dea	d Lines	
Exercise 5 (Back Tracking Techniqu	ies)		
	a) 8-Queens Problem	1	
	b) Sum of Sub sets		
Exercise 6 (Back Tracking Technique	es)		
	a) Graph Coloring.		
	b) Hamiltonian Cycle	S	
Exercise 7 (Back Tracking Technique	es)		
a) 0/1 Knap Sack Problem			
Exercise 8 (Branch and Bound)			
	a) 0/1 Knap Sack Probl	em	
b)	Traveling Sales Person P	roblem	
Exercise 9 (Graph Algorithms)	C		
	a) Breadth First Searc	h	
	b) Depth First Search	1	
Exercise 10 (Graph Algorithms)	•		
	a) Kruskal`s Algorith	m	
	b) Prim`s Algorithm	s	
Exercise 11 (Graph Algorithms)			
	a) Bellman Ford Algori	thm	
	b) Dijkstra`s Algorith	m	

Exercise 12 (Graph Algorithms)

Floyd- Warshall Algorithm.

Course Outcomes:

On completion of the course student will able to:

- 1. For a given algorithms analyze worst-case running times of algorithms based on asymptotic analysis and justify the correctness of algorithms.
- 2. Describe the greedy paradigm and explain when an algorithmic design situation calls for it. For a given problem develop the greedy algorithms.
- 3. Describe the divide-and-conquer paradigm and explain when an algorithmic design situation calls for it. Synthesize divide-and-conquer algorithms. Derive and solve recurrence relation.
- 4. Describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for it.
- 5. For a given problem of dynamic-programming an develop the dynamic programming algorithms and analyze it to determine its computational complexity.

	JA	AVA PROGRAMMING SEMESTER IV	LAB	
	Subject Code	21AMAML4080	Internal Marks	15
	Number of Tutorial Hours/Week	3(P)	External Marks	35
	Total Number of Practice Hours	36	Exam Hours	03
		Credits – 1.5		
Cours	e Objectives:			
This c	ourse will enable the stud	ents to:		
•	Build software developm	nent skills using java prog	ramming for real world	applications
٠	Implement classical prob	olems using java program	ming.	
•	Make the students to exceptions.	write programs using r	nultithreading concepts	and handle
•	Develop programs using	java collection API as w	ell as javaStandard Lib	rary.
•	make the students to cre	ate the Graphical User Int	erfaceusing JavaFX.	5
	List of expe	eriments	8	
Exerc	ise 1 (Basics)			
a)	Write a Java program to	display default value of a	Ilprimitive data type of	Iava
u)	Write a Java Program to	print the area of the Triar	ngle	bu vu.
c)	Write a Java program to	check whether the given	number iseven or odd	
Everc	ise 2 (Basics-Continued)	eneek whether the given		
	Write a Java program to	display the Fibonacci sea	lience	
a) b)	Write a Java program	that display the roots of	f a quadratic equation	$a x^2 + b x = 0$
0)	Calculate the discrimina	te D and basing on value	of D, describe the natur	The of root.
c)	Five Bikers Compete in	n a race such that they d	rive at a	
	constant speed which ma	ay or may not be the same	e as the other. To qual	ify the race
	the speed of a racer me	ust be		
	more than the average sp	peed of all 5 racers. Take	as input the speed of ea	ich racer and
	print back the speed of q	ualifying racers.		
Exerc	ise 3 (Operations, Expre	essions, Control-flow, Str	rings)	
a)	Write a Java program to search.	search for an element in	a givenlist of elements	using binary
b)	Write a Java program to	o sort given list of eleme	nts usingbubble sort	
c)	Write a Java program us	ing StringBuffer to delete	, removecharacter.	
Exerc	ise 4 (Class, Objects, Me	ethods)	, 	
a)	Write a Java program to	implement class mechar	nism. – Create a class,	methods and
,	invoke them inside main	n method.		
b)	Write a Java program to	implement constructor.		
c)	Write a Java program to	implement constructorov	erloading.	
d)	Write a Java program im	plement method overload	ling.	
Exerc	ise 5 (Inheritance)		C	
a)	Write a Java program to	implement Single Inherit	ance	
/ h)	Write a Java program to	implement multi-level In	heritance	
0)	Program to	Productive interior to you inte		
c) Write a Java program to find areas of different shapes using abstract class.

Exercise 6 (Inheritance - Continued)

- a) Write a Java program give example for "super" keyword.
- b) Write a Java program to implement Interface.
- c) Write a Java program that implements Runtimepolymorphism

Exercise 7 (Exceptions)

- a) Write a Java program that describes exception handling mechanism
- b) Write a Java program for creation of Illustrating throw, throws and finally
- c) Write a Java program to illustrate sub class exception precedence over base class.
- d) Write a Java program for creation of User DefinedException

Exercise 8 (Packages)

- a) Write a Java program to create a package named pl and implement ex1 class in it.
- b) Write a Java program to create a package "mypack" and import it in circle class.
- c) Write a Java program illustrate class path

Exercise 9 (I/O)

- a) Write a Java program to illustrate the concept of I/O Streams.
- b) Write a Java program that reads a file name from the user, and then displays information about whether the file exists, whether the file is readable, whether the file is writable, thetype of file and the length of the file in bytes.
- c) Write a Java program that displays the number of characters, lines and words in a text file.

Exercise 10 (Threads)

- a) Write a Java program that creates threads by extending Thread class .First thread display "Good Morning "every 1 sec, the second thread displays "Hello "every 2 seconds and the third display "Welcome" every 3 seconds ,(Repeat the same by implementing Runnable)
- b) Write a Java program to illustrate the concept of Thread synchronization.
- c) Write a Java program that correctly implements producer consumer problem using the concept of inter thread communication

Exercise 11 (Collections)

- a) Write a Java program to create a new array list, add somecolors (string) and print out the collection.
- b) Write a Java program to iterate a linked list in reverseorder.
- c) Write a Java program to iterate through all elements in ahash list.
- d) Write a Java program to associate the specified value with the specified key in a HashMap.

Exercise 12 (JavaFX)

- a) Write a Java program to demonstrate Mouse and Keyboard event Handling
- b) Write a Java program to design a notepad editor.

COURSE OUTCOMES:

On completion of the course student will able to:

- 1. Understand and Apply Object oriented features and Java concepts.
- 2. Examine and analyze alternative solutions to a given problem using java.
- 3. Apply the concept of multithreading and implement exception handling.
- 4. Implement front end and back end of an application using Java
- 5. Develop applications using Console I/O and File I/O, GUI applications.

	SOC: Fu Simulation	ndamentals of Progra using MATLAB for (AI & ML)	amming and AI applications	
C1-		SEMESTER IV	Tuto un al Maulas	15
Subjec	or of Lacture Hours/Week	21AMAMC4090	External Marks	15
Total	Number of Lecture Hours	<u>1L+2F</u> <u>48</u>	Exem Hours	3
Pre-ree	auisite	Data Structures		Credits -2.0
Cours	se objectives:			
Enable	e the students to			
•	Learn the basic programm	ing in MATLAB		
•	Learn to solve problems u	sing MAILAB solutions ΔI techniques u	ware using MATI AR	
•	Learn Simulation of a mo	del to solve engineer	ing problems	
•	Learn different AI toolbox	kes to solve problem	8	
List of	f Experiments			
1	Matrix athematic operation	ns, finding inverse o	f matrices, finding Fige	en
	values using MATLAB.			
2.	Polynomial roots finding,	product and division	of polynomials.	
3.	Polynomial curve fitting	g, polynomial eva	luation, plotting usin	ng
	graphics.			
4.	Finding solutions of differ	rential equations and	nonlinear systems.	
5.	Finding solution of a pro-	blem using Genetic	Algorithm by writing	a
	program in MATLAB.			
6.	Finding solution of a pro-	oblem using ANN 1	techniques by writing	a
	program in MATLAB.			
7.	Modelling of equations u	using Simulink and	developing linear sta	te
	space model from Simulir	ık diagram		
8.	Solving a equation using (Genetic Algorithm to	oolbox.	
9.	Solving a equation using I	Neural Networks too	lbox.	
10	Solving a problem using F	uzzy Logic toolbox.		
	RSE OUTCOMES:			
On con	mpletion of the course stud	ent will able to:	. 1 11	
1	. Understand and apply th	e programming skill	s to solve problems.	
$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	To find colutions of real	ining in MAILAB u	ising polynomials.	
3	to solve problems using	mear equations and a MATI AR	uso appry Ar technique	8
1	To understand Simulati	on skills to apply f	or colving engineering	a
4	problems.	on skins to apply I	or solving engineering	5
5	. To understand different	AI tool boxes to solv	ve problems.	

ENGINEERING ECON	OMICS & FINANCIAL MAN	AGEMENT	
Subject Code	21CMMST5010	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	69	Exam Hours	03
	Credits – 03		
Unit -1: Introduction to Manage	rial Economics and demand An	alysis	Hours
Definition of Managerial Economic relation with other subjects-Conce Demand its Exception-Elasticity of forecasting and its Methods.	cs and Scope-Managerial Econon pts of Demand-Types-Determents f Demand-Types and Measureme	nics and its s-Law of nt- Demand	16
Unit -2: Production and Cost An	alysis	I	
Production function-Isoquants and Isocost-Law of Variable proportions- Cobb- Douglas Production Function-Economics of Sale-Cost Concepts- Opportunity Cost-Fixed vs Variable Costs-Explicit Costs vs Implicit Costs- Cost Volume Profit analysis- Determination of Break-Even Point (Simple Problems).			
Unit – 3: Introduction To Markets, Pricing Policies & forms Organizations and			
Business Cycles		-	
Market Structures: Perfect Com Oligopoly – Features – Price, O Market Skimming Pricing, And In Evaluation of Sole Trader – Partn Enterprises and their forms – Busi of Business Cycle	petition, Monopoly and Monopoly output Determination – Methods ternet Pricing: Flat Rate Pricing. I ership – Joint Stock Company – ness Cycles – Meaning and Featu	polistic and of Pricing: Features and State/Public res – Phases	13
Unit – 4:Introduction to Accoun	ting & Financing Analysis		
Introduction to Double Entry Systems – Preparation of Financial Statements- Analysis and Interpretation of Financial Statements-Ratio Analysis – Preparation of Funds flow cash flow statements (Simple Problems)			
Unit – 5: Capital and Capital Bu	ldgeting		
Capital Budgeting: Meaning of Budgeting-Need for Capital Bu Traditional and Modern Methods.	Capital-Capitalization-Meaning adgeting-Techniques of Capital	of Capital Budgeting-	14

Text	t(T) / Reference(R) Books:
T1	Managerial Economics and Financial Analysis, Dr. A. R. Aryasri, TMH 2011.
T2	Managerial Economics and Financial Analysis, 1/e, B. Kuberadu, HPH, 2013
Т3	Management Science, Dr. P. Vijaya Kumar & Dr. N. Apparao, Cengage, Delhi, 2012
T4	Management Science, Dr. A. R. Arya Sri, TNH, 2011.

R1	Financial Accounting for Management, Ambrish Gupta, Pearson Education, New
	Delhi.
R2	Managerial Economics, 4th Ed, H. Craig Peterson & W. Cris Lewis, PHI.
R3	Essentials of management, Koontz and weihrich, TMH 2011
R4	Global management systems, Seth& Rastogi, Cengage learning, delhi, 2011
R5	Managerial Economics, V. Maheswari, Sultan Chand
R6	Managerial Economics & Financial Analysis, Dr. B. Kuberudu and Dr. T. V.
	Ramana, Himalaya Publishing House 2011.
W1	https://www.coursera.org/courses?query=financial%20engineering
W2	https://www.mooc-list.com/categories/economics-finance

Cour	se Outcomes: On completion of this course, students can
CO1	Students are equipped with the knowledge of managerial economics and estimating
	demand for a product.
CO2	Students understand Production and Cost concepts, estimating Cost Break even
	Analysis.
CO3	Students are equipped with the knowledge on Markets and Pricing methods along
	with Business Cycles.
CO4	Students are able to understand Accounting Concepts and Prepare Financial
	Statements- Analysis
CO5	Students are able to analyze various investment project proposals with the help of
	Capital Budgeting techniques.

Course	Course Outcomes to Program Outcomes Mapping: (1: Low, 2: Medium, 3: High)													
							PO						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	-	-	-	-	-	-	-	3	-	2	-
CO2	2	2	2	-	-	-	-	-	-	-	3	-	2	-
CO3	2	2	2	-	-	-	-	-	-	-	3	-	2	-
CO4	2	2	2	-	-	-	-	-	-	-	3	-	2	-
CO5	2	2	2	-	-	-	-	-	-	-	3	-	2	-
Course	2	2	2	-	-	-	-	-	-	-	3	-	2	-

CON	MPUTER NETWORKS		
Subject Code	21AMAMT5020	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1: Introduction			Hours
Network Topologies, WAN, LAN, MAN. OSI Reference Model, TCP/IP Reference Model, Multiplexing (Frequency Division, Wavelength Division, Synchronous Time Division and Statistical Time Division Multiplexing Techniques), Switching Techniques (Circuit-switching, Datagram, Virtual Circuit Networks).			08
Unit -2:The Data Link Layer			
Design Issues, Services Provided to the Network Layer, Framing, Error Control, Flow Control, Error Detection and Correction, Error Correcting Codes, Error Detecting Codes, A Simplex Stop and Wait Protocol for an Error free channel, A Simplex Stop and Wait Protocol for a Noisy Channel, Sliding Window Protocols (A One Bit Sliding Window Protocol-A Protocol Using Go-Back-NA Protocol Using Selective Repeat), Data Link Layer in HDLC: Configuration and transmission modes, frames, control fields.			10
Unit – 3:The Medium Access Co	ntrol Sub layer		
The Channel Allocation Problem, Static Channel Allocation, Assumptions for Dynamic Channel Allocation, Multiple Access Protocols (Aloha, Carrier Sense Multiple Access Protocols, Collision-Free Protocols, Limited Contention Protocols, Wireless LAN Protocols, MQTT protocals, IOT protocals.			10
Unit – 4: Routing Algorithms			
Routing Algorithms- Shortest-Path Routing, Flooding, Hierarchical routing, Broadcast, Multicast and Distance Vector Routing.			10
Unit – 5: Congestion Control & Application Layer			
Congestion Control & Application Layer Congestion Control Algorithms, Approaches to Congestion Control-Traffic Aware Routing-Admission Control-Traffic Throttling-Load Shedding, IP Addressing, Classless and Class full Addressing, Sub-netting. The Domain Name System- The DNS Name Space, Resource Records, Name Servers, Electronic Mail Architecture and Services, The User Agent, Message Formats, Message Transfer, Final Delivery.			12

Text(T) / Reference(R) Books:

T1 Computer Networks, 5th Edition, Tanenbaum and David J Wetherall, Pearson Edu, 2010.

T2	Computer Networks: A Top Down Approach, Behrouz A. Forouzan,				
	FirouzMosharraf, McGraw Hill Education.				
T3	Computer Networks, Mayank Dave, CENGAGE				
T4	Data and Computer Communications, Fifth Edition, William Stallings, PHI, 2005.				
R1	Computer Networks, A Systems Approach, Fifth Edition, Peterson & Davie, Harcourt,				
	2011.				
R2	Network Management Standards, Second Edition, Ulysses Black, McGraw Hill,				
	1994				
R3	Computer Networking - A Top-down Approach, Sixth Edition, James F. Kurose,				
	Keith W. Ross, Pearson, 2013.				
R4	Computer Networks - A Systems Approach, 5th ed, Larry L. Peterson and Bruce S.				
	Davie, Morgan Kaufmann/ Elsevier, 2011				
W1	https://swayam.gov.in/courses/5172-computer-networks				
W2	https://www.coursera.org/courses?query=computer%20network				

Cours	Course Outcomes: On completion of this course, students can		
CO1	Understand OSI and TCP/IP models		
CO2	Analyze MAC layer protocols and LAN technologies		
CO3	Design applications using internet protocols		
CO4	Understand routing and congestion control algorithms		
CO5	Understand how internet works.		

SOFT	WARE ENGINEERING		
Subject Code	21AMAMT5030	IA Marks	30
Number of Lecture Hours/Week	ber of Lecture Hours/Week 3 Exam Marks		70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1: Software and Software	Engineering		Hours
The Nature of Software, The Unique Software Process, Software Eng Models: A Generic Process Model Prescriptive Process Models, Spece Personal and Team Process Model Agile Development: What is an Requirements Analysis and Specific Software Requirement Specification	the Nature of Web Apps, Software H ineering Practice, software Myt lel, Process Assessment and In cialized Process Models, The Unif ds, Process Terminology, Product a agile process?, Extreme Program <i>ication:</i> Requirements Gathering an ion (SRS), Formal System Specific	Engineering, hs. <i>Process</i> provement, ied Process, and Process. mming(XP). nd Analysis, eation.	10
Unit -2: Software Design			
Overview of the Design Process, How to Characterize of a Design, Cohesion and Coupling, Layered Arrangement of Modules, Approaches to Software Design. <i>Function-Oriented Software Design:</i> Overview of SA/SD Methodology, Structured analysis, Developing the DFD Model of a System, Structured Design, Detailed Design, Design Review, over view of Object-Oriented design. <i>User</i> <i>Interface Design:</i> Characteristics of Good User Interface, Basic Concepts, Types of User Interfaces, Fundamentals of component-based GUI Development, A User Interface Design Methodology.			10
Unit – 3: Coding and Testing			
Coding, Code Review, Software I Box Testing, White-Box Testi Integration Testing, Testing Object General Issues Associated with Te	Documentation, Testing, Unit Tes ng, Debugging, Program Ana ct-Oriented Programs, System Te esting.	ting, Black- lysis Tool, sting, Some	10
Unit – 4: Software Reliability an	d Quality Management		
Software Reliability, Statistical Testing, Software Quality, Software Quality Management System, ISO 9000, SEI Capability Maturity Model. <i>Computer</i> <i>Aided Software Engineering:</i> Case and its Scope, Case Environment, Case Support in Software Life Cycle, Other Characteristics of Case tools, Towards Second Generation CASE Tool, Architecture of a Case Environment.		10	
Unit – 5: Software Maintenance			
Software maintenance, Mainten Software Configuration Manageme almost No Reuse So Far? Basic Iss Level.	ance Process Models, Mainter ent. <i>Software Reuse:</i> what can be r sues in Reuse Approach, Reuse at o	ance Cost, eused? Why organization	10

Text	(T) / Reference(R) Books:			
T1	Software engineering A practitioner's Approach, Roger S. Pressman, Seventh Edition			
	McGrawHill International Edition.			
T2	Fundamentals of Software Engineering, Third Edition, Rajib Mall, PHI.			
T3	Software Engineering, Ian Sommerville, Ninth edition, Pearson education			
T4	Software Engineering, Concepts and Practices, Ugrasen Suman, Cengage Learning			
R1	Software Engineering A Primer, Waman S Jawadekar, Tata McGraw-Hill, 2008			
R2	Software Engineering, A Precise Approach, Pankaj Jalote, Wiley India, 2010.			
R3	Software Engineering, Principles and Practices, Deepak Jain, Oxford University Press			
R4	Software Engineering1: Abstraction and modeling Diner Biorner Springer			
114	International edition, 2006.			
R5	Software Engineering concepts, R. Fairley, TMH.			
W1	https://www.edx.org/learn/software-engineering			
W2	https://www.coursera.org/courses?query=software%20engineering			

Cours	Course Outcomes: On completion of this course, students can		
CO1	Define and develop a software project from requirement gathering to implementation.		
CO2	Obtain knowledge about principles and practices of software engineering		
CO3	Focus on the fundamentals of software project		
CO4	Focus on modelling a software project		
CO5	Obtain knowledge about estimation and maintenance of software systems		

Course Outcomes to Program Outcomes Mapping: (1: Low, 2: Medium, 3: High)														
		РО									PS	0		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	2	-	-	-	-	-	-	-	-	-	2	-
CO2	2	3	2	-	-	-	-	-	-	-	-	-	2	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	2	-
CO4	2	3	2	-	-	-	-	-	-	-	-	-	2	-
CO5	2	3	2	-	-	-	-	-	-	-	-	-	2	-
Course	2	3	2	-	-	-	-	-	-	-	-	-	2	-

	GRAPH THEORY					
(PROGRAM ELECTIVE-I)						
Subject Code	21AMAMT504A	IA Marks	30			
Number of Lecture Hours/Week	3	Exam Marks	70			
Total Number of Lecture Hours	50	Exam Hours	03			
	Credits – 03					
Unit -1: Introduction]	Hours			
Introduction-Discovery of graphs, Definitions, Subgraphs, Isomorphic graphs, Matrix representations of graphs, Degree of a vertex, Directed walks, paths and cycles, Connectivity in digraphs, Eulerian and Hamilton digraphs, Eulerian digraphs, Hamilton digraphs, Special graphs, Complements, Larger graphs from smaller graphs, Union, Sum, Cartesian Product, Composition, Graphic sequences, Graph theoretic model of the LAN problem, Havel-Hakimi criterion, Realization of a graphic sequence.						
Unit -2: Connected graphs and s	hortest paths					
Connected graphs and shortest paths - Walks, trails, paths, cycles, Connected graphs, Distance, Cut-vertices and cut-edges, Blocks, Connectivity, Weighted graphs and shortest paths, Weighted graphs, Dijkstra"s shortest path algorithm, Floyd-Warshall shortest path algorithm.						
Unit – 3: Trees		I				
Trees- Definitions and characterizations, Number of trees, Cayley"s formula, Kirchoermatrix-tree theorem, Minimum spanning trees, Kruskal"s algorithm, Prim"s algorithm, Special classes of graphs, Bipartite Graphs, Line Graphs, Chordal Graphs, Eulerian Graphs, Fleury"s algorithm, Chinese Postman problem, Hamilton Graphs, Introduction, Necessary conditions and sufficient conditions						
Unit – 4: Independent sets cover	ings and matchings	I				
Independent sets coverings and m coverings: basic equations, Matchin Theorem, Perfect matchings in graph	natchings – Introduction, Independ gs in bipartite graphs, Hall [®] s Theor Is, Greedy and approximation algorit	ent sets and em, K onig"s hms	10			
Unit – 5: Vertex Colorings						
Vertex Colorings- Basic definitions theorem, Greedy coloring algorithm, Colorings, Introduction and Basics, G Edge-coloring of bipartite graphs, Cl scheduling problem and equitable ec	c, Cliques and chromatic number, Coloring of chordal graphs, Brooks th Supta-Vizing theorem, Class-1 and Cl ass-2 graphs, Hajos union and Class Ige-coloring.	, Mycielski ^w s neorem, Edge ass-2 graphs, s-2 graphs, A	12			

Text	(T) / Reference(R) Books:
T1	J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Texts in Mathematics.
	Springer, 1st edition, 2008.
T2	J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.
R1	Lecture Videos: http://nptel.ac.in/courses/111106050/13.
R2	Introduction to Graph Theory, Douglas B. West, Pearson.
R3	Schaum's Outlines Graph Theory, Balakrishnan, TMH.
R4	Introduction to Graph Theory, Wilson Robin j, PHI.
R5	Graph Theory with Applications to Engineering and Computer Science, Narsing Deo, PHI.
R6	Graphs - An Introductory Approach, Wilson and Watkins.

Cours	Course Outcomes: On completion of this course, students can					
CO1	Know some important classes of graph theoretic problems;					
CO2	Know connected graphs and shortestvpaths;					
CO3	Be able to formulate and prove central theorems about trees, matching, connectivity, colouring and planar graphs;					
CO4	Be able to describe and apply some basic algorithms for graphs;					
CO5	Be able to use graph theory as a modelling tool.					

Course Outcomes to Program Outcomes Mapping: (1: Low, 2: Medium, 3: High)															
							PO						PS	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO2	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO3	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO4	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO5	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
Course	2	3	2	-	-	-	-	-	-	-	-	-	2	-	

W	EB PROGRAMMING				
(PR	OGRAM ELECTIVE-I)				
Subject Code	21AMAMT504B	IA Marks	30		
Number of Lecture Hours/Week	3	Exam Marks	70		
Total Number of Lecture Hours	50	Exam Hours	03		
	Credits – 03				
Unit -1: HTML & CSS			Hours		
HTML: Basic Syntax, Standard HTML Document Structure, Basic Text Markup, Html styles, Elements, Attributes, Heading, Layouts, Html media, frames, Images, Hypertext Links, Lists, Tables, Forms, GET and POST method, Dynamic HTML					
CSS: Cascading style sheets, Level Selector Forms.	s of Style Sheets, Style Specificat	ion Formats,			
Unit -2: JAVASCRIPT					
JAVASCRIPT: Introduction to Javascript, Objects, Primitives Operations and Expressions, Control Statements, Arrays, Functions, Constructors, Pattern Matching using Regular Expressions.					
Unit – 3: JDBC & NETWORKING	r				
JDBC Overview – JDBC implementa Database Results, handling database (ation – Connection class – Statemer Queries.	ts - Catching	10		
Networking– Inet Address class – UR	L class- TCP sockets – UDP sockets	5,			
Unit – 4: AWT & SERVLETS					
AWT: Working with Windows Graphics and Text. Using AWT Controls, Layout Managers and Menus. Servlet – life cycle of a servlet. The Servlet API, Handling HTTP Request and Response, using Cookies, Session Tracking. Introduction to JSP.					
Unit – 5: XML AND WEB SERVIC	CES				
Xml – Introduction-Form Navigation UDDI-WSDL-Java web services – W	-XML Documents- XSL – XSLT- V eb resources.	Web services-	8		

Text	(T) / Reference(R) Books:
T1	Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson, 2013.
T2	The complete Reference Java, 8th edition, Herbert Schildt, TMH.
T3	Michael Morrison XML Unleashed Tech media SAMS.
R1	Web Technologies, HTML, JavaScript, PHP, Java, JSP, XML and AJAX, Black book, 1st
	Edition, Dream Tech, 2009.
R2	Jon Duckett "Beginning Web Programming" WROX
R3	Marty Hall and Larry Brown "Core Servlets and Java Server pages Vol. 1: Core
	Technologies", Pearson.
R4	Web Technologies, Uttam K Roy – Oxford

Cours	Course Outcomes: On completion of this course, students can					
CO1	Understand the basic concepts of HTML and CSS & apply those concepts to design					
	static web pages.					
CO2	Identify and understand various concepts related to dynamic web pages and validate					
	them using JavaScript.					
CO3	Able to connect a java program to a DBMS and perform insert, update and delete					
	operations on DBMS table.					
CO4	Able to write server-side applications using servlets.					
CO5	Outline the concepts of Extensible markup language.					

Course	Course Outcomes to Program Outcomes Mapping: (1: Low, 2: Medium, 3: High)														
							PO						PS	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO2	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO3	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO4	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO5	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
Course	2	3	2	-	-	-	-	-	-	-	-	-	2	-	

COMPUT	TER VISION AND ROBOTICS				
(PR	OGRAM ELECTIVE-I)				
Subject Code	21AMAMT504C	IA Marks	30		
Number of Lecture Hours/Week	3	Exam Marks	70		
Total Number of Lecture Hours	50	Exam Hours	03		
	Credits – 03				
Unit -1: CAMERAS, Radiometry – M	easuring Light:		Hours		
CAMERAS: Pinhole Cameras. Radiometry – Measuring Light: Light in Space, Light Surfaces, Important Special Cases. Sources, Shadows, And Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric Stereo, Interreflections: Global Shading Models. Color: The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color.					
Unit -2: Linear Filters		·			
 Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates. Edge Detection: Noise, Estimating Derivatives, Detecting Edges. 					
Texture: Representing Texture, Ana Application: Synthesis by Sampling Lo	alysis (and Synthesis) Using Orient ocal Models, Shape from Texture.	ed Pyramids,			
Unit – 3: The Geometry of Multiple	Views, human vision				
The Geometry of Multiple Views: Two ViewsStereopsis: Reconstruction, Human Stereposis, Binocular Fusion, Using More CamerasSegmentation by Clustering: What Is Segmentation?Human Vision: Grouping and Getstalt, Applications: Shot Boundary Detection andBackground Subtraction, Image Segmentation by Clustering Pixels, Segmentation byGraph-Theoretic Clustering,					
Unit – 4: Segmentation by Fitting a	Model				
 Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice. Tracking With Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples 					
Unit – 5: Geometric Camera Models					
Geometric Camera Models: Eleme Parameters and the Perspective Pr Equations.	nts of Analytical Euclidean Geomo ojection, Affine Cameras and Affir	etry, Camera ne Projection	12		

Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, An Application: Mobile Robot Localization.

Model-Based Vision: Initial Assumptions, Obtaining Hypotheses by Pose Consistency, Obtaining Hypotheses by pose Clustering, Obtaining Hypotheses Using Invariants, Verification, Application: Registration In Medical Imaging Systems, Curved Surfaces and Alignment.

Text	(T) / Reference(R) Books:
T1	David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning
	(Indian Edition), 2009.
R1	E. R. Davies: Computer and Machine Vision – Theory, Algorithms and Practicalities, Elsevier
	(Academic Press), 4th edition, 2013
R2	R. C. Gonzalez and R. E. Woods "Digital Image Processing" Addison Wesley 2008.
R3	Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London
	Limited 2011

Cours	Course Outcomes: On completion of this course, students can					
CO1	Implement fundamental image processing techniques required for computer vision					
CO2	Implement boundary tracking techniques.					
CO3	Apply chain codes and other region descriptors, Hough Transform for line, circle, and ellipse					
	detections.					
CO4	Apply 3D vision techniques and Implement motion related techniques.					
CO5	Develop applications using computer vision techniques.					

Course	Course Outcomes to Program Outcomes Mapping: (1: Low, 2: Medium, 3: High)														
	PO													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO2	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO3	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO4	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO5	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
Course	2	3	2	-	-	-	-	-	-	-	-	-	2	-	

CO	OMPUTER GRAPHICS										
(PROGRAM ELECTIVE-I)											
Subject Code	21AMAMT504D	IA Marks	30								
Number of Lecture Hours/Week	3	Exam Marks	70								
Total Number of Lecture Hours	50	Exam Hours	03								
	Credits – 03										
Unit -1: Introduction and Output primitives											
Introduction: Application areas of Computer Graphics, overview of graphics systems, video-display devices, raster-scan systems, random scan systems, graphics monitors and work stations and input devices Output primitives: Points and lines, line drawing algorithms (Bresenham's and DDA Algorithm), midpoint circle and ellipse algorithms Polygon Filling: Scan-line algorithm, boundary-fill and flood-fill algorithms											
Unit -2: 2-D geometrical transforms	s and 2-D viewing										
2-D geometrical transforms: Translation, scaling, rotation, reflection and shear transformations, matrix representations and homogeneous coordinates, composite transforms, transformations between coordinate systems 2-D viewing: The viewing pipeline, viewing coordinate reference frame, window to view-port coordinate transformation, viewing functions, Cohen-Sutherland algorithms, Sutherland –											
Unit – 3: 3-D object representation											
3-D object representation: Polygon a Hermite curve, Bezier curve and B-S illumination models, polygon rendering	surfaces, quadric surfaces, spline pline curves, Bezier and B-Spline ng methods.	representation, surfaces. Basic	10								
Unit – 4: 3-D Geometric transforma	ations and 3-D viewing										
3-D Geometric transformations: Tra transformations, composite transform coordinates, view volume and general	nnslation, rotation, scaling, reflect nations. 3-D viewing: Viewing pi projection transforms and clippin	ction and shear peline, viewing g.	10								
Unit – 5: Computer animation											
Computer animation: Design of an functions, raster animation, computer specifications.	imation sequence, general comp animation languages, key frame s	buter animation systems, motion	12								
BSP-tree methods and area sub-divisi	on methods	n, deptn-butter,									

Text	(T) / Reference(R) Books:
T1	"Computer Graphics C version", Donald Hearn and M. Pauline Baker, Pearson Education
T2	Computer Graphics Principles & practice", second edition in C, Foley, Van Dam, Feiner and
	Hughes, Pearson Education.
T3	Computer Graphics, Steven Harrington, TMH
R1	Procedural elements for Computer Graphics, David F Rogers, Tata Mc Graw hill, 2nd edition
R2	Principles of Interactive Computer Graphics", Neuman and Sproul, TMH.

R3 Principles of Computer Graphics, Shalini Govil, Pai, 2005, Springer.

Cours	Course Outcomes: On completion of this course, students can							
CO1	Acquire knowledge on the fundamental concepts and theory of computer graphics.							
CO2	Acquire familiarity with the relevant mathematics of computer graphics.							
CO3	Be able to design basic graphics application programs.							
CO4	Be able to design animations.							
CO5	Be able to design applications that display graphic images to given specifications.							

Course	Course Outcomes to Program Outcomes Mapping: (1: Low, 2: Medium, 3: High)														
	PO													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO2	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO3	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO4	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
CO5	2	3	2	-	-	-	-	-	-	-	-	-	2	-	
Course	2	3	2	-	-	-	-	-	-	-	-	-	2	-	

COMPUTER NETWORKS LAB													
Subject Code21AMAML5060IA Marks14													
Number of Tutorial Hours/Week	03(P)	Exam Marks	35										
Total Number of Practice Hours	36	Exam Hours	03										
Credits – 1.5													
List of Programs													
Exercise1													
Understanding and using of commands like ifconfig, netstat, ping, arp, telnet. ftp. finger.													
traceroute, whoisetc. Usage of elementary socket system calls (socket (), bind(). listen().													
accept(),connect(),send(),recv(),sendto(),recvfrom()).												
Exercise2													
Implementation of Connection oriented	concurrent service (TC	CP).											
Exercise3													
Implementation of Connectionless Itera	tive time service (UDP).											
Exercise4													
Implementation of Select system call.													
Exercise5													
Implementation of gesockopt (), setso	ckopt () system calls.												
Exercise6													
Implementation of getpeername () syste	em call.												
Exercise7													
Implementation of remote command ex-	ecution using socket sy	stem calls.											
Exercise8													
Implementation of Distance Vector Rou	ting Algorithm.												
Exercise9													
Implementation of SMTP.													
Exercise10													
Implementation of FTP.													
Exercise11													
Implementation of HTTP.													
Exercise12													
Implementation of RSA algorithm.													
Note: Implement programs 2 to 7 in C a	and 8 to 12 in JAVA.												

Cours	Course Outcomes: On completion of this course, students can									
CO1	Understand and explain the basic concepts of Grid Computing.									
CO2	Explain the advantages of using Grid Computing within a given environment									
CO3	Prepare for any upcoming Grid deployments and be able to get started with a potentially available Grid setup.									
CO4	Discuss some of the enabling technologies e.g. high-speed links and storage area networks.									
CO5	Build computer grids.									

SOFTWARE ENGINEERING LAB												
Subject Code	21AMAML5070	IA Marks	15									
Number of Tutorial Hours/Week	03(P)	Exam Marks	35									
Total Number of Practice Hours	36	Exam Hours	03									
Credits – 1.5												
CitExercise1Do the Requirement Analysis and PrepaExercise2Using COCOMO model estimate effort.Exercise3Calculate effort using FP oriented estimeExercise4Analyze the Risk related to the project aExercise5Develop Time-line chart and project formethods.Exercise6Draw E-R diagrams, DFD, CFD and structExercise7Design of Test cases based on requiremExercise8Prepare FTRExercise 9Prepare Version control and change contentExercise10Design SoftwareInterfaceExercise11Mini Project	redits – 1.5 are SRS nation model. and prepare RMMM p table using PERT or (tured charts for the pu nents and design.	lan. CPM project schedu roject. figuration items.	ling									

Cours	Course Outcomes: On completion of this course, students can								
CO1	Able to translate end-user requirements into system and software requirements								
CO2	Able to generate a high-level design of the system from the software requirements								
CO3	Able to have experience and/or awareness of testing problems and will be able to develop								
	a simple testing report								

Soft Skills & Aptitude Builder - 1											
Subject Code		IA Marks	15								
Number of Practice Hours/Week	4	Exam Marks	35								
Total Number of Practice Hours	64	Exam Hours	3								
Credits - 2											
Section A											
Soft Skills											
Unit – 1: Intrapersonal Communication	1		Hours								
Introduction to Soft Skills and its Signific	ance										
Personal Effectiveness: Who am I and W	hat am I; My Strengths an	d Weaknesses;									
SWOT Analysis; SMART Goal Setting; E	Being Proactive		11								
Principles of Personal Vision: Beginning	g with the End in Mind;										
Time Management: Understanding Priorit	ies; Put First-Things-First										
Activity: Psychometric Tests and SWOT	Analysis, SMART Goal S	etting									
Unit 2: Interpersonal Communication											
Principles of Creative Cooperation and	Organisation Skills: Thi	nk Win-Win;									
Seek First to Understand then to be Under	stood; Synergize; Life-Lo	ng Learning									
Emotional Intelligence : Self-Awareness,	Self-Regulation, Empathy	, Assertiveness,	11								
Adoptability, Managing Emotions											
Activity: Resolving a Conflict with your I	Friend/Colleague/Family N	Aember; Group									
Discussions & Debates											
Unit – 3: 21 st Century Skills											
What are 21 st Century Skills? Learning	Skills- Digital Literacy-										
Critical Ininking: Active Listening, Obs	ervation, Introspection, A	nalytical Thinking,									
Open Mindedness Ducklam Soluting: Understanding the Con		ofining the									
Problem Solving: Understanding the Con Droblem Course and Effect Analysis Even	apiexity of the Problem, L	Penning the									
Problem, Cause and Effect Analysis, Exploring Possible Solutions, Planning Actions,											
Analysing Results of your Actions, Getting Feedback, Redefining the Problem, The											
Decision Making: Managing Conflict Co	nflict Resolution Method	s of Decision									
Making Effective Decision Making in Te	ams – Methods & Styles	s of Decision									
Activity: Case Study											
Sec	tion B										
Aptitud	le Builder										
Unit – 4: Ratios & Percentages											
Definition of Ratio, Properties of Ratios, G	Comparison of Ratios, Pro	blems on Ratios,									
Compound Ratio, Problems on Proportion	, Mean Proportional and C	Continued									
Proportion.											
Partnership: Introduction, Relation betw	een Capitals, Period of Inv	vestments and									
Shares											
Number System: Classification of Numb	ers, Divisibility Rules, Fin	ding the Units									
Digit, Finding Remainders in Divisions In	volving Higher Powers, L	CM and HCF									
Models											
Percentages: Introduction, Converting a	Percentage into Decimals,	Converting a									
Decimal into Percentage, Percentage Equivalent of Fractions, Problems on											
Percentages											
From And Loss: Problems on Profit and Loss Percentage, Relation between Cost											
Frice and Senting Frice, Discount and Marked Frice, 1W0 Different Articles Sold at Same Cost Price, Two Different Articles Sold at Same Solling Price Coin ⁰⁴ / Loco ⁰⁴											
on Selling Price											
Problems on Ages. Introduction Problem	us based on Ages										
Averages: Definition of Average Rules of	is buscu on Ages f Average Problems on Δ	verage Problems									
on Weighted Average Finding Average u	sing Assumed Mean Meth	od Alligation									
and Mixture: Problems on Mixtures. All	igation Rule, Problems on	Alligation									

Unit – 5:	Mental Ability								
Difference Series, Product Series, Squares Series, Cubes Series, Alternate Series									
Combina	Combination Series, Miscellaneous Series, Place Values of Letters								
Number and Letter Analogies: Definition of Analogy, Problems on Number									
Analogy, Problems on Letter Analogy, Problems on Verbal Analogy									
Odd Ma	Odd Man Out: Problems on Number Odd Man Out, Problems on Letter Odd Man								
Out, Prob	Out, Problems on Verbal Odd Man Out								
Coding a	and Decoding: Coding using Same Set of Letter, Coding using Different Set	16							
of Letters	s, Coding into a Number, Problems on R-Model								
Blood re	lations: Defining the Various Relations among the Members of a Family,								
Solving I	Blood Relation Puzzles, Solving the Problems on Blood Relations using								
Symbols	and Notations								
Direction	n Sense: Solving Problems by Drawing the Paths, Finding the Net Distance								
Travellec	l, Finding the Direction, Problems on Clocks, Problems on Shadows								
Section-A	Section-A: Text (T) / Reference (R) Books:								
For Unit	s 1, 2, & 3								
T1	English and Soft Skills, Dr. S. P. Dhanvel, Orient Blackswan, 2011								
R1	Seven Habits of Highly Effective People, Stephen R Covey								
R2	Emotional Intelligence, Daniel Goleman, Bantom Book, 2006								
R3	21st Century Skills: Learning for Life in our Times, Bernie Trilling, Charles Fa	del; John							
	Wiley & Sons								
For Unit	s 4&5								
T1 5	Agarwal, S Chand, 'Quantitative Aptitude'								
T2	Agarwal, S.Chand, 'A Modern Approach to Logical Reasoning'								
R1	Quantitative Aptitude for CAT By Arun Sharma								
R2	Barrons, Mc Graw Hills, Thorpe's Verbal Reasoning, LSAT Materials								
Course (Dutcomes: On completion of this course, students can								
Section A	A: Soft Skills								
CO1	re-engineer attitude and understand its influence on behaviour								
CO 2	develop interpersonal skills and be an effective goal oriented team play	er							
CO 3	develop holistic personality with a mature outlook to function effectivel	y in							
	different circumstances								
Section I	3: Aptitude Builder								
CO 4	solve the real-time problems for performing job functions easily								
CO 5	analyse the problems logically and critically								

Course Outcomes to Programs Outcomes Mapping: (1: Low, 2: Medium, 3: High)

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	-	-	-	-	-	-	-	-	-	1	-	3	-	-	-
2	-	-	-	-	-	-	-	-	2	1	-	3	-	-	-
3	-	-	-	-	-	-	-	-	1	1	-	3	-	-	-
4	2	2	-	1	-	-	-	-	-	-	-	1	-	-	-
5	1	1	-	2	-	-	-	-	-	-	-	-	-	-	-
Course	2	2	-	2	-	-	-	-	2	1	-	3	-	-	-

INTELLECTUAL PROPERTY RIGHTS (Mandatory Course)					
Subject Code	21CMAMN5090	IA Marks	30		
Number of Lecture Hours/Week	3	Exam Marks	70		
Total Number of Lecture Hours	50	Exam Hours	03		
	Credits – 03				
Unit -1: Introduction to Intellectual	property		Hours		
Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.					
Unit -2: Trade Marks					
Trade Marks: Purpose and function protectable matter, selecting, and processes.	of trademarks, acquisition of trade evaluating trade mark, trade mark	mark rights, registration	10		
Unit – 3: Law of copy rights					
Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law. Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer					
Unit – 4: Trade Secrets					
Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation. Unfair competition: Misappropriation right of publicity, false advertising.					
Unit – 5: New development of intellectual property					
New development of intellectual pro right law, patent law, intellectua intellectual property, international patent law, and international develo	perty: new developments in trade m I property audits. International o – trade mark law, copy right law, oment in trade secrets law	ark law; copy overview on international	12		

Text	Text(T) / Reference(R) Books:			
T1	Intellectual property right, Deborah. E. Bouchoux, Cengage learning.			
R1	Intellectual property right – Unleashing the knowledge economy, prabuddha ganguli, Tata			
	McGraw Hill Publishing company ltd.			

Cours	Course Outcomes: On completion of this course, students can			
CO1	Understand Intellectual property rights and its types.			
CO2	Demonstrate the Trade Marks of IPR.			
CO3	Demonstrate the law of copy rights.			

CO4	Demonstrate the trade secret laws and trade secrets.
CO5	Demonstrate new developments in intellectual property laws.

Course Outcomes to Program Outcomes Mapping: (1: Low, 2: Medium, 3: High)														
	PO									PS	50			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	2	-	-	-	-	-	-	-	-	-	2	-
CO2	2	3	2	-	-	-	-	-	-	-	-	-	2	-
CO3	2	3	2	-	-	-	-	-	-	-	-	-	2	-
CO4	2	3	2	-	-	-	-	-	-	-	-	-	2	-
CO5	2	3	2	-	-	-	-	-	-	-	-	-	2	-
Course	2	3	2	-	-	-	-	-	-	-	-	-	2	-

III Year - II Semester

Deep Learning					
Subject Code	21AMAMT6010	Internal Marks	30		
Number of Lecture	3	External Marks	70		
Hours/Week		External Marks	70		
Total Number of Lecture	50	Exam Hours	3		
Hours		Exam Hours			
Course Objective: To introduce activities in this field. To learn network training.	the fundamentals of architectures and of	f deep learning and the m optimization methods for	ain research deep neural		
Unit-1			Hours		
Introduction History of Deep L	earning, McCulloch	Pitts Neuron, Multilaver			
Perceptrons (MLPs), Representa	tion Power of MLPs	S. Sigmoid Neurons. Feed	10		
Forward Neural Networks. Back	propagation	,			
Unit-2	1 1 0				
Activation functions and para	meters: Gradient D	escent (GD). Momentum			
Based GD, Nesterov Accelerate	d GD, Stochastic G	D, Principal Component	10		
Analysis and its interpretations, S	Singular Value Decor	mposition, Parameters v/s	10		
Hyper-parameter	0	-			
Unit-3					
Auto-encoders & Regularizat	tion: Auto encoder	s and relation to PCA,			
Regularization in auto encode	rs, Denoising auto	encoders, Sparse auto			
encoders, Regularization: Bias	L2 regularization, Early	10			
stopping, Dataset augmentation, Encoder Decoder Models, Attention					
Mechanism, Attention over images, Batch Normalization					
Unit-4					
Deep Learning Models: Convolution/pooling layers, CN	Introduction to NN Applications, L	CNNs, Architecture, eNet, AlexNet, ZF-Net,			
VGGNet, GoogLeNet, ResNet.	Introduction to R	NNs, Back propagation	10		
through time (BPTT), Vanishing	g and Exploding Gra	dients, Truncated BPTT,			
GRU, LSTMs					
Unit-5					
Deep Learning Applications	s: Image Process	ing, Natural Language			
Processing, Speech recognition, Video Analytics					
Course Outcomes: After completion of course. students would be able to:					
1. Understand the fundamentals of deep learning and the main research activities in this					
field					
2. Remember architectures and optimization methods for deep neural network training					
3. Implement, apply and test relevant learning algorithms in TensorFlow					
4. Critically evaluate the method's applicability in new contexts					

5. Construct new applications to solve problems.

Text	t(T) / Reference(R) Books:
T1	Deep Learning- Ian Goodfellow, Yoshua Bengio and Aaron Courvile, MIT Press,
	2016
T2	Deep Learning with Python - Francois Chollet, Released December 2017,
	Publisher(s): Manning Publications, ISBN: 9781617294433

T3	Deep Learning Illustrated: A Visual, Interactive Guide to Artificia	al Intelligence - Jon						
	Krohn, Grant Beyleveld, Aglaé Bassens, Released September 2019, Publisher(s):							
	Addison-Wesley Professional, ISBN: 9780135116821							
T4	Deep Learning from Scratch - Seth Weidman, Released September	2019, Publisher(s):						
	O'Reilly Media, Inc., ISBN: 9781492041412							
R1	Artificial Neural Networks, Yegnanarayana, B., PHI Learning Pvt. Ltd, 2009							
R2	Matrix Computations, Golub, G.,H., and Van Loan,C.,F, JHU Pres	ss,2013						
R3	Neural Networks: A Classroom Approach, Satish Kumar, '	Tata McGraw-Hill						
	Education, 2004.							
W1	Swayam NPTEL: Deep	Learning:						
	https://onlinecourses.nptel.ac.in/noc22_cs22/preview							
W2	https://www.mooc-list.com/categories/economics-finance							

COMPILER DESIGN					
(PROFESSIONAL ELECTIVE-II)					
Subject Code	21AMMAT6040	IA Marks	30		
Number of Lecture Hours/Week	3	Exam Marks	70		
Total Number of Lecture Hours50Exam Hour					
	Credits – 03				
Unit -1: Introduction			Hours		
Introduction: The structure of a c programming language basics L Analyzer, Input Buffering, Reco Generator Lex Finite Automata Fi	compiler, the science of building exical Analysis: The Role of ognition of Tokens, The Lexic rom Regular Expressions to Autor	a compiler, the Lexical cal-Analyzer	10		
of a Lexical-Analyzer Generator, (Description of DFA-Based Patte	rn Matchers			
Unit -2: Syntax Analysis					
Syntax Analysis: Introduction, Co Top-Down Parsing, Bottom-Up Pa More Powerful LR Parsers, Using	ontext-Free Grammars, Writing rsing, Introduction to LR Parsing: Ambiguous Grammars and Parser	a Grammar, Simple LR, Generators.	10		
Unit – 3: Syntax-Directed Trans	lation and Intermediate-Code G	eneration			
Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD's, Applications of Syntax-Directed Translation, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's. Intermediate-Code Generation: Variants of Syntax Trees, Three-Address Code, Types and Declarations, Type Checking, Control Flow, Switch-Statements, Intermediate Code for Procedures.			10		
Unit – 4: Run-Time Environmen	ts				
Run-Time Environments: Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management, Introduction to Garbage Collection, Introduction to Trace-Based Collection. Code Generation: Issues in the Design of a Code Generator, The Target Language, addresses in the Target Code, Basic Blocks and Flow Graphs, Optimization of Basic Blocks, A Simple Code Generator, Peephole Optimization, Register Allocation and Assignment, Dynamic Programming Code-Generation.			10		
Unit – 5: Machine-Independent	Optimization	I			
Machine-Independent Optimization Introduction to Data-Flow Anal Constant Propagation, Partial-Redu	on: The Principal Sources of O ysis, Foundations of Data-Flow undancy Elimination, Loops in Fl	ptimization, w Analysis, ow Graphs.	10		

Text(T) / Reference(R) Books:

T1 Compilers: Principles, Techniques and Tools, Second Edition, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman.

R1	Lex & Yacc – John R. Levine, Tony Mason, Doug Brown, O'reilly.
R2	Compiler Construction, Louden, Thomson.

Cours	Course Outcomes: On completion of this course, students can			
CO1	Demonstrate the ability to design a compiler given a set of language features.			
CO2	Acquire skills in using lex tool & yacc tool for devloping a scanner and parser.			
CO3	Design and implement LL and LR parsers.			
CO4	Design algorithms to do code optimization in order to improve the performance of a program in terms of space and time complexity.			
CO5	Design algorithms to generate machine code.			

DATA W	AREHOUSING AND MINING	r				
Subject Code	21AMAMT6030	IA Marks	30			
Number of Lecture Hours/Week	3	Exam Marks	70			
Total Number of Lecture Hours	50	Exam Hours	03			
Credits – 03						
Unit -1						
Data Warehouse and OLAP Te Multidimensional Data Model, I Implementation, From Data Ware	chnology: An Overview: Data Data Warehouse Architecture, I housing to Data Mining. (Han &	Warehouse, A Data Warehouse Kamber)	10			
Unit -2						
Data Mining: Introduction, Data Data Mining, Data Mining Tasks, Data Preprocessing: Aggregation Subset Selection, Feature creati Transformation, Measures of Simi	Mining, Motivating challenges Types of Data, Data Quality. , Sampling, Dimensionality Re- on, Discretization and Binariz ilarity and Dissimilarity. (Tan &	, The origins of duction, Feature zation, Variable Vipin)	10			
Unit – 3						
Classification: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Working of Decision Tree, building a decision tree, methods for expressing an attribute test conditions, measures for selecting the best split, Algorithm for decision tree induction. Model Overfitting: Due to presence of noise, due to lack of representation samples, evaluating the performance of classifier: holdout method, random sub sampling.			10			
cross-validation, bootstrap. Bayes Theorem, Naïve Bayes Classifier (Tan &Vipin)						
Unit – 4			1			
Association Analysis: Basic Concepts and Algorithms: Problem Definition, Frequent Item Set Generation, Apriori Principle, Apriori Algorithm, Rule Generation, Compact Representation of Frequent Itemsets, FP-Growth Algorithm. (Tan &Vipin)						
Unit – 5						
Cluster Analysis: Basic Concept Analysis? Different Types of Clu The Basic K-means Algorithm, I Strengths and Weaknesses; A Agglomerative Hierarchical Clust Center-Based Approach, DBSCA &Vipin)	s and Algorithms: Overview, Vastering, Different Types of Clu K-means Additional Issues, Bise gglomerative Hierarchical Cl ering Algorithm DBSCAN: Tra N Algorithm, Strengths and W	What Is Cluster Isters; K-means: ecting K-means, ustering: Basic ditional Density eaknesses. (Tan	10			

Text(T) / Reference(R) Books:

T1	Introduction to Data Mining : Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Fifth
	Impression, Pearson, 2015.
T2	Data Mining concepts and Techniques, 3rd Edition, Jiawei Han, Michel Kamber,
	Elsevier, 2011
R1	Data Mining Techniques and Applications: An Introduction, Hongbo Du, Cengage
	Learning, 2010
R2	Data Mining : Introductory and Advanced topics : Dunham, First Edition, Pearson,
	2020
R3	Data Warehousing Data Mining & OLAP, Alex Berson, Stephen Smith, TMH, 2008
R4	Data Mining Techniques, Arun K Pujari, Universities Press, 2001

Web Resources:

1. NPTEL Online Course on Data Mining : https://onlinecourses.nptel.ac.in/noc18_cs14/preview

Cours	Course Outcomes: After the completion of the course, student will be able to		
CO1	Summarize the architecture of data warehouse		
CO2	Apply different preprocessing methods, Similarity, Dissimilarity measures for any given raw data.		
CO3	Construct a decision tree and resolve the problem of model overfitting		
CO4	Compare Apriori and FP-growth association rule mining algorithms for frequent itemset generation		
CO5	Apply suitable clustering algorithm for the given data set		

SOFTWARE TESTING METHODOLOGIES (Professional Elective – II)			I)
Subject Code	21AMAMT604X	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Introduction: Purpose of testing, I bugs, taxonomy of bugs. Flow g testing, predicates, path predicat instrumentation, application of pa	Dichotomies, model for testing, corraphs and Path testing: Basics cores and achievable paths, path set th testing.	onsequences of oncepts of path ensitizing, path	10
Unit -2			L
Transaction Flow Testing: transaction flows, transaction flow testing techniques. Dataflow testing: Basics of dataflow testing, strategies in dataflow testing, application of dataflow testing. Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and interfaces testing, domain and interface testing, domains and testability		10	
Unit – 3			
Paths, Path products and Regular reduction procedure, applications Logic Based Testing: overview, specifications	r expressions: path products & p , regular expressions & flow anon , decision tables, path expression	ath expression, maly detection. ons, kv charts,	12
Unit – 4			
State, State Graphs and Transition state testing, Testability tips.	n testing: state graphs, good & ba	nd state graphs,	8
Unit – 5			
Graph Matrices and Application: In power of a matrix, node reduction given an exposure to a tool like JN	Motivational overview, matrix of g on algorithm, building tools. (Stu Meter or Win-runner).	graph, relations, dent should be	10

Text	Text(T) / Reference(R) Books:		
T1	Software Testing techniques - Baris Beizer, Dreamtech, second edition.		
T2	Software Testing Tools – Dr. K. V. K. K. Prasad, Dreamtech.		
R1	Software Testing Techniques – SPD(Oreille)		
R2	Software Testing in the Real World – Edward Kit, Pearson		
R3	Effective methods of Software Testing, Perry, John Wiley.		
R 4	Art of Software Testing – Meyers, John Wiley.		

Cour	Course Outcomes: After the completion of the course, student will be able to		
CO1	To provide knowledge of the concepts in software testing.		
CO2	To provide knowledge of transaction flow testing techniques, Dataflow testing.		
CO3	To provide knowledge of Paths, Path products and Regular expressions.		
CO4	To understand the concepts of State, State Graphs and Transition testing		
CO5	To develop skills in software test automation and management using latest tools.		

INFORMATION RETRIEVAL SYSTEMS (Professional Elective – II)			
Subject Code	21AMAMT6010	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
UNIT - I Introduction to Information	ion Retrieval Systems: Definition	of Information	
Retrieval System, Objectives o	f Information Retrieval System	ns, Functional	10
Overview, Relationship to Databa	ase Management Systems, Digita	l Libraries and	
Data Warehouses. Information Re	trieval System Capabilities: Searc	ch Capabilities,	
Browse Capabilities, Miscellaneou	is Capabilities.		
Unit -2			
Cataloging and Indexing: History	and Objectives of Indexing, Ind	lexing Process,	
Automatic Indexing, Information	Extraction. Data Structure: Introd	luction to Data	10
Structure, Stemming Algorithms, 2	Inverted File Structure, N-Gram I	Data Structures,	
PAT Data Structure, Signature File	e Structure, Hypertext and XML I	Data Structures,	
Hidden Markov Models.			
Unit – 3			
Automatic Indexing: Classes of A	utomatic Indexing, Statistical Inc	lexing, Natural	10
Language, Concept Indexing, Hyp	ertext Linkages. Document and Te	erm Clustering:	10
Introduction to Clustering, Thesaurus Generation, Item Clustering, Hierarchy of			
Clusters.			
Unit – 4			
User Search Techniques: Search S	tatements and Binding, Similarity	y Measures and	
Ranking, Relevance Feedback, Selective Dissemination of Information Search,			
Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext.			10
Information Visualization: Introduction to Information Visualization, Cognition			
and Perception, Information Visua	lization Technologies.		
Unit – 5			1
Text Search Algorithms: Introduc	tion to Text Search Techniques,	Software Text	
Search Algorithms, Hardware Text Search Systems. Multimedia Information		10	
Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph			10
Retrieval, Imagery Retrieval, Vide	eo Retrieval.		
			L

Text	(T) / Reference(R) Books:
T1	Information Storage and Retrieval Systems - Theory and Implementation, Second
	Edition, Gerald J. Kowalski, Mark T. Maybury, Springer
T2	Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and
	Algorithms, Prentice Hall, 1992.

R 1	Information Storage & Retrieval By Robert Korfhage – John Wiley & Sons.
R2	Modern Information Retrieval By Yates and Neto Pearson Education.

Course Outcomes: After the completion of the course, student will be able to		
CO1	Apply IR principles to locate relevant information large collections of data	
CO2	Design different document clustering algorithms	

CO3 Implement retrieval systems for web search tasks.

CO4 Use Information Visualization Technologies

CO5 Design an Information Retrieval System for web search tasks.

CRYPTOGRA	PHY AND NETWORK SECU	RITY	
(P	rofessional Elective – II)		
Subject Code	21AMAMT6010	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Introduction: Security attacks, se Substitution Techniques, Transpor SQL injection defense technique hijacking (ARP attacks, route ta middle attacks).	rvices & mechanisms, Symmetric tation Techniques, Phishing Defer es, Format string vulnerabilities ble modification) UDP hijackin	Cipher Model, nsive measures, , TCP session g (man-in-the-	10
Unit -2			•
Traditional Block Cipher Structure, DES, Block Cipher Design Principles, AES- Structure, Transformation functions, Key Expansion, Blowfish, IDEA, Block Cipher Modes of Operations.		10	
Unit – 3			
Number Theory: Prime and Ref Fermat's and Euler's Theorems logarithms. Public Key Cryptography: Prince Algorithms, Diffie Hellman Key Elliptic Curve Cryptography.	elatively Prime Numbers, Modu , The Chinese Remainder the ciples, public key cryptography al Exchange, Elgamal encryption	lar Arithmetic, orem, Discrete gorithms, RSA & decryption,	10
Unit – 4			
Application of Cryptographic has Hash Algorithm, Message Authe HMAC & CMAC. Digital Signatu	sh Functions, Requirements & S entication Functions, Requirement ares, NIST Digital Signature Algorithms	ecurity, Secure nts & Security, rithm.	10
Unit – 5	<u> </u>		
IP Security: IP Security Overview Header, Encapsulating Security Pa Key Management. Intrusion detection: Overview, A Host based IDS/IPS.	v, IP Security Architecture, Authory ayload, Combining Security Asso approaches for IDS/IPS, Signature	entication ciations and e based IDS,	10

Text	(T) / Reference(R) Books:
T1	Cryptography & Network Security: Principles and Practices, William Stallings, PEA,
	Sixth edition.
	Hack Proofing your Network, Russell, Kaminsky, Forest Puppy, Wiley Dreamtech
T2	Introduction to Computer Networks & Cyber Security, Chwan Hwa Wu, J.David
	Irwin, CRC press
T3	Hack Proofing your Network, Russell, Kaminsky, Forest Puppy, Wiley Dreamtech
R 1	Machine Learning - Mc Graw Hill, Tom M. Mitchell.

R2	Fundamentals Of Speech Recognition: Lawrence Rabiner and Biing- Hwang Juang.
	PrenticeHall Pub

Course Outcomes: After the completion of the course, student will be able to		
CO1	Identify information security goals, classical encryption techniques and acquire fundamental knowledge on the concepts of finite fields and number theory.	
CO2	Compare and apply different encryption and decryption techniques to solve problems related to confidentiality and authentication.	
CO3	Apply the knowledge of cryptographic checksums and evaluate the performance of different message digest algorithms for verifying the integrity of varying message sizes.	
CO4	Apply different digital signature algorithms to achieve authentication and create secure applications.	
CO5	Apply the knowledge of cryptographic utilities and authentication mechanisms to design secure applications.	

Course Outcomes: After the completion of the course, student will be able to			
CO1	Understand the concept of Pattern Recognition.		
CO2	Understand the algorithms for pattern recognition and machine learning.		
CO3	Understand about different classifiers.		
CO4	Understand about SVM		
CO5	Understand about clustering and decision problems.		
PATTERN RECOGNITION			
--	--------------	------------	-------
(Professional Elective – II)			
Subject Code	21AMAMT6010	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Introduction: Security attacks, services & mechanisms, Symmetric Cipher Model, Substitution Techniques, Transportation Techniques, Phishing Defensive measures, SQL injection defense techniques, Format string vulnerabilities, TCP session hijacking (ARP attacks, route table modification) UDP hijacking (man-in-the- middle attacks)		10	
Unit -2			
Traditional Block Cipher Structure, DES, Block Cipher Design Principles, AES- Structure, Transformation functions, Key Expansion, Blowfish, IDEA, Block Cipher Modes of Operations.		10	
Unit – 3			
 Number Theory: Prime and Relatively Prime Numbers, Modular Arithmetic, Fermat's and Euler's Theorems, The Chinese Remainder theorem, Discrete logarithms. Public Key Cryptography: Principles, public key cryptography algorithms, RSA Algorithms, Diffie Hellman Key Exchange, Elgamal encryption & decryption, Elliptic Curve Cryptography. 		10	
Unit – 4			
Application of Cryptographic hash Functions, Requirements & Security, Secure Hash Algorithm, Message Authentication Functions, Requirements & Security, HMAC & CMAC. Digital Signatures, NIST Digital Signature Algorithm.		10	
Unit – 5			
IP Security: IP Security Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload, Combining Security Associations and Key Management. Intrusion detection: Overview, Approaches for IDS/IPS, Signature based IDS, Host based IDS/IPS.			10

Text	(T) / Reference(R) Books:
T1	Cryptography & Network Security: Principles and Practices, William Stallings, PEA,
	Sixth edition.
	Hack Proofing your Network, Russell, Kaminsky, Forest Puppy, Wiley Dreamtech
T2	Introduction to Computer Networks & Cyber Security, Chwan Hwa Wu, J.David
	Irwin, CRC press
T3	Hack Proofing your Network, Russell, Kaminsky, Forest Puppy, Wiley Dreamtech
R 1	Machine Learning - Mc Graw Hill, Tom M. Mitchell.

R2	Fundamentals Of Speech Recognition: Lawrence Rabiner and Biing- Hwang Juang.
	PrenticeHall Pub

Cours	se Outcomes: After the completion of the course, student will be able to
CO1	Identify information security goals, classical encryption techniques and acquire fundamental knowledge on the concepts of finite fields and number theory.
CO2	Compare and apply different encryption and decryption techniques to solve problems related to confidentiality and authentication.
CO3	Apply the knowledge of cryptographic checksums and evaluate the performance of different message digest algorithms for verifying the integrity of varying message sizes.
CO4	Apply different digital signature algorithms to achieve authentication and create secure applications.
CO5	Apply the knowledge of cryptographic utilities and authentication mechanisms to design secure applications.

Cours	Course Outcomes: After the completion of the course, student will be able to		
CO1	Understand the concept of Pattern Recognition.		
CO2	Understand the algorithms for pattern recognition and machine learning.		
CO3	Understand about different classifiers.		
CO4	Understand about SVM		
CO5	Understand about clustering and decision problems.		

DEEP LEARNING LAB			
Subject Code	21AMAML6060	IA Marks	50
Number of Tutorial Hours/Week	03(P)	Exam Marks	50
Total Number of Practice Hours	36	Exam Hours	03
Credits – 1.5			

List of Experiments:

1. Implement multilayer perceptron algorithm for MNIST Hand written Digit Classification.

2. Design a neural network for classifying movie reviews (Binary Classification) using IMDB dataset.

3. Design a neural Network for classifying news wires (Multi class classification) using Reuters dataset.

4. Design a neural network for predicting house prices using Boston Housing Price dataset.

5. Build a Convolution Neural Network for MNIST Hand written Digit Classification.

6. Build a Convolution Neural Network for simple image (dogs and Cats) Classification

7. Use a pre-trained convolution neural network (VGG16) for image classification.

8. Implement one hot encoding of words or characters.

9. Implement word embeddings for IMDB dataset.

10. Implement a Recurrent Neural Network for IMDB movie review classification problem.

Software Packages required:

- Keras
- Tensorflow
- PyTorch

TEXT BOOKS:

1. Reza Zadeh and Bharath Ramsundar, "Tensorflow for Deep Learning", O'Reilly publishers, 2018.

REFERENCE BOOKS:

1. https://github.com/fchollet/deep-learning-with-python-notebooks

Course Outcomes: The end of the course student will be able to		
CO1	Implement deep neural networks to solve real world problems.	
CO2	Choose appropriate pre-trained model to solve real time problem.	
CO3	Interpret the results of two different deep learning models.	

COMPILER DESIGN LAB			
Subject Code	21AMAML6070	IA Marks	50
Number of Tutorial Hours/Week	03(P)	Exam Marks	50
Total Number of Practice Hours	36	Exam Hours	03
Credits – 1.5			

List of Experiments

- 1. Write a C program to identify different types of Tokens in a given Program.
- 2. Write a Lex Program to implement a Lexical Analyzer using Lex tool.
- 3. Write a C program to Simulate Lexical Analyzer to validating a given input String.
- 4. Write a C program to implement the Brute force technique of Top down Parsing.
- 5. Write a C program to implement a Recursive Descent Parser.
- 6. Write C program to compute the First and Follow Sets for the given Grammar.

7. Write a C program for eliminating the left recursion and left factoring of a given grammar

8. Write a C program to check the validity of input string using Predictive Parser.

9. Write a C program for implementation of LR parsing algorithm to accept a given input string. 10. Write a C program for implementation of a Shift Reduce Parser using Stack Data Structure to accept a given input string of a given grammar.

11. Simulate the calculator using LEX and YACC tool.

12. Generate YACC specification for a few syntactic categories.

13. Write a C program for generating the three address code of a given expression/statement.

TEXT BOOKS:

1. Compilers: Principles, Techniques and Tools, Second Edition, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, Pearson Publishers, 2007.

REFERENCE BOOKS:

1. John R Levine, Tony Mason, Doug Brown, "Lex and Yacc", Orielly, 2nd Edition, 2009.

Course Outcomes: The end of the course student will be able to		
CO1	C Design simple lexical analyzers x Apply Lex and Yacc tools	
CO2	Determine predictive parsing table for a CFG	
CO3	Examine LR parser and generating SLR Parsing table	
CO4	Relate Intermediate code generation for subset C language	

DATA MINING USING PYTHON LAB			
Subject Code	21AMAML6080	IA Marks	50
Number of Tutorial Hours/Week	03(P)	Exam Marks	50
Total Number of Practice Hours	36	Exam Hours	03
Credits – 1.5			

List of Experiments:

Note: Use python library scikit-learn wherever necessary

1. Demonstrate the following data preprocessing tasks using python libraries. a) Loading the dataset b) Identifying the dependent and independent variables c) Dealing with missing data

2. Demonstrate the following data preprocessing tasks using python libraries. a) Dealing with categorical data b) Scaling the features c) Splitting dataset into Training and Testing Sets

3. Demonstrate the following Similarity and Dissimilarity Measures using python a) Pearson's Correlation b) Cosine Similarity c) Jaccard Similarity d) Euclidean Distance e) Manhattan Distance

4. Build a model using linear regression algorithm on any dataset.

5. Build a classification model using Decision Tree algorithm on iris dataset

6. Apply Naïve Bayes Classification algorithm on any dataset

7. Generate frequent itemsets using Apriori Algorithm in python and also generate association rules for any market basket data.

8. Apply K- Means clustering algorithm on any dataset.

9. Apply Hierarchical Clustering algorithm on any dataset.

10. Apply DBSCAN clustering algorithm on any dataset.

Web References:

1. https://analyticsindiamag.com/data-pre-processing-in-python/

2.https://towardsdatascience.com/decision-tree-in-python-b433ae57fb93

3.https://towardsdatascience.com/calculate-similarity-the-most-relevant-metrics-in-a-nutshell-9a43564f533e

4.https://www.springboard.com/blog/data-mining-python-tutorial/

5.https://medium.com/analytics-vidhya/association-analysis-in-python-2b955d0180c

6.https://www.datacamp.com/community/tutorials/naive-bayes-scikit-learn

7.https://www.analyticsvidhya.com/blog/2019/05/beginners-guide-hierarchical-clustering/

8. https://towards data science.com/dbscan-algorithm-complete-guide-and-application-with-python-scikit-learnd 690 cbae4 c5

Course Outcomes: The end of the course student will be able to		
CO1	Apply preprocessing techniques on real world datasets	
CO2	Apply apriori algorithm to generate frequent item sets.	
CO3	Apply Classification and clustering algorithms on different datasets.	

Soft Skills & Aptitude Builder - 2				
Subject Code		IA Marks	15	
Number of Practice Hours/Week	4	Exam Marks	35	
Total Number of Practice Hours	64	Exam Hours	3	
	Credits - 2			
	Section A			
	Soft Skills		1	
Unit – 1: Communicative Competen	ce		Hours	
Verbal Reasoning: Selecting Words, S	potting Errors, Ordering	of Words,		
Sentence Formation, Paragraph Forma	tion, Ordering of Senter	ices, Reading		
Comprehension, Completing Statemen	ts, Verbal Analogies, Ca	ause and Effect,	16	
Syllogism, Logical Sequence of Words	s, Verbal Reasoning, An	alysing	16	
Arguments, Verification of Truth, Mat	ching Definitions, Them	e Detection		
E-Mail Etiquette, Reporting News				
Activity: Completing Textual Exercise	S			
Unit 2: Career and Employability Sl		<u> </u>		
What is a Career: Career vs Job, Caree	r Values & Grid, Skills	vs Strengths,		
Spotting Skills/Reflection of Present S	kills, Meeting the Expec	tation of your	16	
Employer, Matching your Skills with t	ne Required Skills, Prep	baring Resume,	10	
Preparing for Interviews & Structuring	Answers	D		
Activity: Resume Building, Interviews	, Presentations, Digital	Resumes		
Sect A petitud	lion B			
Aptitud	le Builder			
Pines and Cisterns: Problems on Unit	any method Relation be	otween Men		
Days Hours and Work Problems on N	an-Day-Hours Method	Problems on		
Alternate Days Problems on Pipes and Cisterns				
Time Distance and Sneed Problems on Trains Roats and Streams.				
Relation between Speed, Distance and	Time. Converting km/h	into m/s and		
vice versa. Problems on Average Spee	ed. Problems on Relative	e Speed.		
Problems on Circular Tracks, Problem	s on Races	~p••••,	11	
Problems on Trains: Two Trains Mo	ving in Opposite Directi	on. Two Trains		
Moving in same Direction. A Train C	rossing a Stationary Obj	ect of a Given		
Length like a Platform or Bridge, A Tr	ain Crossing a Stationar	v Object like a		
Pole or a Man Boats and Streams: Ti	me Based, which can be	considered as a		
Point Object Speed Based, Distance Based, Average Speed Based				
Unit – 4: Logical and Analytical Rea	soning			
Seating Arrangement: Linear Arrang	ement, Circular Arrange	ement, Tabler,		
Triangular Arrangement, Complex Arr	angement.			
Clocks : Finding the Angle When the '	Time is Given, Finding	the Time When		
the Angle is Known, Relation between Angles, Minutes and Hours, Position of				
Hands of the Clock, Time Gained or Lost by the Clock, Mirror /Water Image-				
based Time.			11	
Calendars : Definition of a Leap Year, Finding the Number of Odd Days,				
Framing the Year Code for Centuries, Finding the Day of any Random				
Calendar Date		4 1 1 1 1		
Syllogisms: Finding the Conclusions using Venn Diagram Method, Finding				
the Conclusions using Syllogism Meth	od			

Simple I	nterest: Definitions, Problems on Interest and Amount, Problems			
when Rate of Interest and Time Period are Numerically Equal				
Compound Interest: Definition and Formula for Amount in Compound				
Interest,	Difference between Simple Interest and Compound Interest for 2			
Years on	the Same Principle and Time Period.			
Unit – 5:	Permutations, Probability, Areas and Volumes			
Definition	n of permutation, Problems on Permutations, Definition of Combinations,			
problems	on Combinations			
Probabil	ity: Definition of Probability, Problems on Coins, Problems on Dice,			
Problems	on Deck of Cards, Problems on Years	10		
Mensura	ation - 2D: Formulas for Areas, Formulas for Volumes of Different			
Solids, P	roblems on Areas			
Mensura	ation - 3D: Problems on Volumes, Problems on Surface Areas			
Text (T)	/ Reference (R) Books:			
For Unit	s 1 & 2			
T1	R.S. Agarwal, Verbal & Non-Verbal Reasoning, S. Chand & Co., L	atest ed.		
	2003			
T2	Soft Skills: Enhancing Employability: Connecting Campus with Co	rporate		
	by MS Rao, IK International Publishing House			
R2	How to Prepare for Verbal Ability and Reading Comprehension, A	run		
	Sharma, Meenakshi Upadhay, Mc Graw Hill			
For Units 3, 4, & 5				
T1 S Agarwal, S Chand, 'Quantitative Aptitude'				
T2 S	Agarwal, S.Chand, 'A modern approach to Logical reasoning'			
R1	Quantitative Aptitude for CAT By Arun sharma			
R2 _	Barrons, Mc Graw Hills, Thorpe's verbal reasoning, LSAT Materials			
Course (Outcomes: On completion of this course, students can			
Section A	A: Soft Skills			
CO 1	learn and practice effective communication skills			
CO 2	develop broad career plans, evaluate the employment market, an	d become		
	industry ready			
Section I	B: Aptitude Builder			
CO 3	develop accuracy on time and distance and units related solutions	8		
CO 4	solve the real-time problems for performing job functions easily			
CO 5	solve problems related to permutations and combinations, proba	bility,		
	areas and volumes			

Course Outcomes to Programs Outcomes Mapping: (1: Low, 2: Medium, 3: High)

со	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	-	-	-	-	I	-	-	-	-	3	-	1	-	-	-
2	-	-	-	-	-	-	-	-	-	2	-	3	-	-	-
3	2	2	-	1	-	-	-	-	-	-	-	1	-	-	-
4	1	1	-	2	-	-	-	-	-	-	-	1	-	-	-
5	2	2	-	1	-	-	-	-	-	-	-	1	-	-	-
Course	2	2	-	1	-	-	-	-	-	2	-	2	-	-	-

ESSENCE OF INDI	AN TRADITIONAL K	NOWLEDGE		
((Mandatory Course)	ſ		
Subject Code	21CMAMN6100	Internal Marks		30
Number of Lecture Hours/Week	02	External Marks		70
Total Number of Lecture Hours	50	Exam Hours		03
	Credits – 00			
Course Objectives:				
The objectives of this course is enab	ble the students to			
1. Understand the concept of T	raditional knowledge and	l its importance		
2. Know the need and importan	nce of protecting tradition	al knowledge.		
3. Know the various enactment	ts related to the protection	n of traditional k	nowl	edge.
4. Understand the concepts	of Intellectual property	to protect the	e tra	ditional
knowledge.				
Unit -1			E	Iours
Introduction to Traditional Kno	wledge Define tradition	al knowledge,		
nature and characteristics, scope	and importance, kinds	of traditional		
knowledge, the physical and social	contexts in which tradition	nal knowledge		1.0
develop, the historical impact of s	ocial change on traditio	nal knowledge		10
systems. Indigenous Knowledge (IK	(), characteristics, traditio	nal knowledge		
vis-à-vis indigenous knowledge.	traditional knowledge	Vs western		
knowledge traditional knowledge vi	s-à-vis formal knowledg	e		
Unit -2		-		
Protection Of Traditional Knowle	dge Protection of tradition	nal knowledge.		
The need for protecting traditio	nal knowledge Signifi	cance of TK		10
Protection value of TK in global ec	conomy Role of Governm	nent to harness		10
TK	onomy, Role of Governi	nent to namess		
$\frac{111}{11} = 3$				
Legal framework and TK: A. The	Scheduled Tribes and Ot	her Traditional		
Forest Dwellers (Recognition of Fo	prest Rights) Act 2006	Plant Varieties		
Protection and Farmer's Rights Act. 2001 (PPVFR Act):				
B: The Biological Diversity Act 2002 and Bules 2004 the protection of				
traditional knowledge hill 2016 Ge	ographical indicators act	2003		
$\frac{1}{10000000000000000000000000000000000$	ographical indicators act	2003.		
Traditional Knowledge And Intell	ectual Property: System	s of traditional		
knowledge protection. Legal concepts	for the protection of tradition	onal knowledge.		
Certain non IPR mechanisms of trad	itional knowledge protecti	on, Patents and		10
traditional knowledge, Strategies to in-	crease protection of tradition	onal knowledge,		
global legal FORA for increasing prote	ction of Indian Traditional	Knowledge.		
Unit – 5				
Traditional Knowledge In Differe	ent Sectors: Traditional	knowledge and		
engineering, Traditional medicine	system, TK and biotech	nology, TK in		
agriculture, Traditional societies de	pend on it for their food	and healthcare		10
needs, Importance of conservati	on and sustainable de	evelopment of		10
environment, Management of biodiv	versity, Food security of t	he country and		
protection of TK. 139.	57 5	5		
Course Outcomes:				
At the end of this course the student	will be able to			
1. Understand and elucidate the	e basic knowledge of trad	itional knowleds	e to	develon
the physical and social chan	ges on traditional knowle	dge system.	,	r
2. Describe the significance of	traditional knowledge pr	otection to com	nuni	cate the
control and significance of				

traditional knowledge information

- 3. Recognize the role of government on traditional knowledge to measure its impact on global economy.
- 4. Explain the acts related to schedule tribes, traditional forest dwellers, plants protection and farmers to inculcate the legal protection information.
- 5. Illustrate the rules of biological diversity and geographical indicators for the protection of traditional knowledge bill.

TEXT BOOKS

- 1. Traditional Knowledge System in India, by Amit Jha, 2009
- 2. Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, Pratibha Prakashan 2012.

REFERENCES

- 1. Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002.
- 2. Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2.

IV Year - I Semester

INTERNET OF	F THINGS (Professional Election	ve - III)		
Subject Code	21AMAMT701A	IA Marks	30	
Number of Lecture Hours/Week	3	Exam Marks	70	
Total Number of Lecture Hours	50	Exam Hours	03	
	Credits – 03			
Unit -1			Hours	
The Internet of Things: An Overview of Internet of things, Internet of Things Technology, behind IoTs Sources of the IoTs, M2M Communication, Examples of IoTs, Design Principles For Connected Devices Internet Connectivity Principles,				
Unit -2	,,,,	-,,		
Business Models for Business H systems LAYERS AND designs IoT/M2M Systems, ETSI M2 Communication Technologies, Da Management Gateway Ease of des	Processes in the Internet of The standardizations, Modified Of 2M domains and High leventa Enrichment and Consolidations signing and affordability	nings ,IoT/M2M SI Stack for the vel capabilities, n and Device	10	
Unit – 3			I	
Design Principles for the Web Connectivity for connected-Devices, Web Communication protocols for Connected Devices, Message Communication protocols for Connected Devices, Web Connectivity for connected-Devices.			10	
Unit – 4			•	
Data Acquiring, Organizing and /Business Processes, IOT/M2M D Business Processes in the Interr Business Processes, Integration ar	Analytics in IoT/M2M, Applie Data Acquiring and Storage, Bus net Of Things, Organizing Da and Enterprise Systems.	cations /Services iness Models for ta, Transactions,	10	
Unit – 5				
Data Collection, Storage and Co Applications/Services, Data Col platform Everything as a service services using the Xively (Pachul Participatory Sensing, Actuator, Sensor Network Technology, Sen	mputing Using a Cloud Platfor lection, Storage and Computi e and Cloud Service Models, be/COSM), Nimbits and other p Radio Frequency Identification sors Technology, Sensing the W	m for IoT/M2M ng Using cloud OT cloud-based latforms Sensor, n, and Wireless, forld.	10	

Text	Text(T) / Reference(R) Books:		
T1	Internet of Things: Architecture, Design Principles And Applications, Rajkamal,		
	McGraw Hill Higher Education		
T2	Internet of Things, A.Bahgya and V.Madisetti, Univesity Press, 2015		
R1	Designing the Internet of Things, Adrian McEwen and Hakim Cassimally, Wiley		
R2	Getting Started with the Internet of Things, CunoPfister, Oreilly		

Cours	Course Outcomes: After the completion of the course, student will be able to		
CO1	Explain in a concise manner how the general Internet as well as Internet of Things		
	work.		
CO2	Understand constraints and opportunities of wireless and mobile networks for Internet		
	of Things.		
CO3	Use basic sensing and measurement and tools to determine the real-time		
	performance of network of devices.		
CO4	Develop prototype models for various applications using IoT technology.		

REINFORCEMENT LEARNING (Professional Elective - III)			
Subject Code	21AMAMT701B	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Reinforcement Learning Problem: Introduction, Elements of Reinforcement Learning, Limitations and Scope, Tic-Tac-Toe, Multi-arm Bandits: <i>n</i> -Armed Bandit Problem, Action-Value Methods, Incremental Implementation, Tracking Nonstationary Problem, Optimistic Initial Values, Upper-Confidence-Bound Action Selection, Gradient Bandit, Associative Search.			10
Unit -2			1
Finite Markov Decision Processes: Agent-Environment Interface, Markov Property, Markov Decision Processes, Value Functions, Optimal Value Functions, Optimality and Approximation, Dynamic Programming: Policy- Evaluation, Improvement, Iteration, Value Iteration, Asynchronous Dynamic Programming, Generalized Policy Iteration, Efficiency of Dynamic Programming,			10
Unit – 3			
Monte Carlo Methods: Monte Carlo- Prediction, Estimation of Action Values, Control, Control without Exploring Start, Temporal- Difference learning: TD Prediction, Advantages of TD Prediction Methods, Optimality of TD(0), Sarsa: On- Policy TD Control, Q-Learning, Games, Afterstates			10
Unit – 4			
Eligibility Traces: n-Step TD Pre- Equivalences of Forward and Back Eligibility Traces using Important	diction, Forward and Backward V ward Views, saras(λ), Watkin's Q Sampling, Variable λ .	View of TD(λ), Q(λ), Off-policy	10
Unit – 5			
Planning and Learning with Integrating Planning, Acting and Backups, Trajectory Sampling, He	Tabular Methods: Models Learning, Prioritized Sweeping, F euristic Search, Monte Carlo Tree	and Planning, Full vs. Sample Search.	10

Text(T) / Reference(R) Books:
T1	Rich S. Sutton, Andrew G. Barto, Reinforcement Learning: An Introduction, Second
	Edition, MIT Press, 2015.
T2	Boris Belousov, Hany Abdulsamad, Pascal Klink, Simone parisi, Reinforcement
	Learning Algorithms: Analysis and Applications, 1st Edition, Springer, 2021.
R1	Phil Winder, Reinforcement Learning: Industrial Applications of Intelligent Agent, 1st
	Edition, O'Reilly, 2020.
R2	Kyriakos G. Vamvoudakis, Yan Wan, Frank, L. Lewis, Derya Cansever, Handbook
	of Reinforcement Learning and Control, 1st Edition, Springer, 2021.
W1	NPTEL Link: Reinforcement Learning:
	https://onlinecourses.nptel.ac.in/noc22_cs34/preview

Cours	Course Outcomes: After the completion of the course, student will be able to			
CO1	Learn how to define RL problems like Tic-Tac-Toe, Multi-arm.			
CO2	Student will be able to understand the finite markov decision processes.			
CO3	Student will be to Understand Monte Carlo Methods and how it is work with tabular			
	methods to solve classical control problems			
CO4	Student should aware of Eligibility Traces and Understand how to find with			
	approximate solutions.			
CO5	Recognize current advanced techniques and applications in RL			

DEVOR	PS (Professional Elective - III)	
Subject Code	21AMAMT701C	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Phases of Software Development software development.	Phases of Software Development Life Cycle, Values and principles of agile software development.		
Unit -2			
Fundamentals of DevOps: Architecture, Deployments, Orchestration, Need, Instance of applications, DevOps delivery pipeline, DevOps eco system.			10
Unit – 3			
DevOps adoption in projects: Technology aspects, Agiling capabilities, Tool stack implementation, People aspect, processes			10
Unit – 4			
CI/CD: Introduction to Continuous Integration, Continuous Delivery and Deployment, Benefits of CI/CD, Metrics to track CICD practices			10
Unit – 5			-
Devops Maturity Model: Key factor maturity model, DevOps maturity	ors of DevOps maturity model, Assessment	stages of Devops	10

Text	(T) Books:
T1	The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in
	Technology Organizations, Gene Kim, John Willis, Patrick Debois, Jez Humb, 1st
	Edition, O'Reilly publications, 2016.
T2	What is Devops? Infrastructure as code, 1st Edition, Mike Loukides, O'Reilly
	publications, 2012

Cours	se Outcomes: After the completion of the course, student will be able to
CO1	Enumerate the principles of continuous development and deployment, automation of
	configuration management, inter-team conaboration, and 11 service aginty.
CO2	Describe DevOps & DevSecOps methodologies and their key concepts
CO3	Illustrate the types of version control systems, continuous integration tools, continuous monitoring tools, and cloud models
CO4	Set up complete private infrastructure using version control systems and CI/CD tools
CO5	Acquire the knowledge of maturity model, Maturity Assessment

BLOCK CHAIN TECHNOLOGIES (Professional Elective - III)			
Subject Code	21AMAMT701D	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	49	Exam Hours	03
	Credits – 03	·	
Unit -1			Hours
Introduction: Introduction, basic i	deas behind block chain, how it	is changing the	
landscape of digitalization, introdu	uction to cryptographic concepts	required, Block	10
chain or distributed trust, Currency	y, Cryptocurrency, How a Cryptoc	currency works,	
Financial services, Bitcoin predict	ion markets.		
Unit -2			
Hashing, public key cryptosystem	ns, private vs public block chain	and use cases,	10
HashPuzzles, Extensibility of Blo	ock chain concepts, Digital Identi	ty verification,	10
Block chain Neutrality, Digital art	, Block chain Environment		
Unit – 3			
Introduction to Bitcoin: Bitcoin	Block chain and scripts, Use ca	ases of Bitcoin	
Blockchain scripting language in	micropayment, escrow etc Down	side of Bit coin	10
mining, Block chain Science: Grid coin, Folding coin, Block chain Genomics, Bit			
coin MOOCs.			
Unit – 4			
Ethereum continued, IOTA, The	e real need for mining, consen	sus, Byzantine	
Generals Problem, and Consensus	s as a distributed coordination pro-	oblem, Coming	
to private or permissioned block	chains, Introduction to Hyper led	lger, Currency,	10
Token, Campus coin, Coin dro	p as a strategy for Public ado	ption,Currency	
Multiplicity, Demurrage currency			
Unit – 5			1
Technical challenges, Business m	odel challenges, Scandals and Pu	blic perception,	
Government Regulations, Uses of	Block chain in E-Governance, La	nd Registration,	9
Medical Information Systems.			

Text	Text(T) / Reference(R) Books:	
T1	Blockchain Blue print for Economy by Melanie Swan	
R1	Blockchain Basics: A Non-Technical Introduction in 25 Steps 1st Edition, by Daniel Drescher	

Cour	Course Outcomes: After the completion of the course, student will be able to		
CO1	Demonstrate the block chain basics, Crypto currency		
CO2	To compare and contrast the use of different private vs. public block chain and use		
	cases		
CO3	Design an innovative Bit coin Block chain and scripts, Block chain Science on varies		
	coins		
CO4	Classify Permission Block chain and use cases – Hyper ledger, Corda		
CO5	Make Use of Block-chain in E-Governance, Land Registration, Medical Information		
	Systems and others		

ROBOTIC PROCESS	AUTOMATION (Professional	Elective – IV)	
Subject Code	21AMAMT702A	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Introduction to Robotic Proc automation, Robotic process auto Components of RPA, RPA platfor RPA Basics : History of Automatio & Flowcharts, Programming C Automated, Types of Bots, Work Concepts, Standardization of p Difference from SDLC, Robotic co Team, Process Design Document/S for RPA, Risks & Challenges with	cess Automation: Scope and omation, What can RPA do, Be rms, The future of automation. on, What is RPA, RPA vs Automa Constructs in RPA, What Pro- cloads which can be automated, I processes, RPA Development ontrol flow architecture, RPA busi Solution Design Document, Indus in RPA, RPA and emerging ecosys	techniques of nefits of RPA, ation, Processes cesses can be RPA Advanced methodologies, iness case, RPA tries best suited stem.	10
Unit -2			1
RPA Tool Introduction and Bas Introduction to RPA Tool: The Naming Best Practices, The Va Variables, True or False Variables Time Variables, Data Table Va Practices, The Arguments Panel, Va Importing New Namespaces, Co Statements, Loops, Advanced Con Flow, Control Flow Activities, Th While Activity, The If Activity, T Each Activity, The Break Act Introduction, Scalar variables, co Manipulation, Gathering and Asse	ics: User Interface, Variables, Mana ariables Panel, Generic Value V s, Number Variables, Array Varia ariables, Managing Arguments, Using Arguments, About Importe ntrol Flow, Control Flow Introd trol Flow, Sequences, Flowcharts ne Assign Activity, The Delay A he Switch Activity, The Delay A he Switch Activity, The While Ad ivity, Data Manipulation, Data ollections and Tables, Text Man embling Data	ging Variables, Variables, Text ables, Date and Naming Best ed Namespaces, luction, If Else , About Control ctivity, The Do ctivity, The For Manipulation ipulation, Data	10
Unit – 3			
Advanced Automation Concepts and Desktop Recording, Web Rec Data Scraping, Scraping advanced Selectors, Customization, Debugg Challenge, Image, Text & Advand Text Automation, Image base Information Retrieval, Advanced Using tab for Images, Starting A RPA, Excel and Data Table basic from PDF, Extracting a single pied	s & Techniques: Recording Intra ording, Input/ Output Methods, S d techniques, Selectors, Defining ging, Dynamic Selectors, Partial ced Citrix Automation, Introduct d automation, Keyboard base Citrix Automation challenges, pps, Excel Data Tables & PDF, cs, Data Manipulation in excel, I ce of data, Anchors, Using anchor	oduction, Basic creen Scraping, and Assessing Selectors, RPA ion to Image & id automation, Best Practices, Data Tables in Extracting Data rs in PDF.	10

Unit - 4

Handling User Events & Assistant Bots, Exception Handling: What are assistant
bots, Monitoring system event triggers, Hotkey trigger, Mouse trigger, System
trigger, Monitoring image and element triggers, An example of monitoring email,
Example of monitoring a copying event and blocking it, Launching an assistant bot
on a keyboard event.10

Exception Handling: Debugging and Exception Handling, Debugging Tools, Strategies for solving issues, Catching errors.

Unit – 5

Deploying and Maintaining The Bot: Publishing using publish utility, Creation of Server, Using Server to control the bots, Creating a provision Robot from the Server, Connecting a Robot to Server, Deploy the Robot to Server, Publishing and managing updates, Managing packages, Uploading packages, Deleting packages

Text	c(T) / Reference(R) Books:
T1	Alok Mani Tripathi, "Learning Robotic Process Automation", Packt Publishing, 2018.
R1	Frank Casale, Rebecca Dilla, Heidi Jaynes, Lauren Livingston, "Introduction to
	Robotic Process Automation: a Primer", Institute of Robotic Process Automation,1st
	Edition 2015.
R2	Richard Murdoch, Robotic Process Automation: Guide To Building Software Robots,
	Automate Repetitive Tasks & Become An RPA Consultant", Independently Published,
	1st Edition 2018.
R3	Srikanth Merianda, "Robotic Process Automation Tools, Process Automation and their
	benefits: Understanding RPA and Intelligent Automation", Consulting Opportunity
	Holdings LLC, 1st Edition 2018.
R4	Lim Mei Ying, "Robotic Process Automation with Blue Prism Quick Start Guide:
	Create software robots and automate business processes", Packt Publishing, 1st Edition
	2018.

Web References:

W1. https://www.uipath.com/rpa/robotic-process-automation

W2. https://www.academy.uipath.com

Cours	Course Outcomes: After the completion of the course, student will be able to	
CO1	Describe RPA, where it can be applied and how it's implemented	
CO2	Describe the different types of variables, Control Flow and data manipulation	
	techniques.	
CO3	Identify and understand Image, Text and Data Tables Automation	
CO4	Describe how to handle the User Events and various types of Exceptions and strategies.	
CO5	Understand the Deployment of the Robot and to maintain the connection.	

NATURAL LANGUAG	E PROCESSING (Professional	Elective – IV)	
Subject Code	21AMAMT702B	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Introduction: Origins and challenge LM, Statistical LM, Regular Morphology, Transducers for les Correcting Spelling Errors, Minim	es of NLP, Language Modeling: C Expressions, Finite-State Auto xicon and rules, Tokenization, hum Edit Distance.	Grammar-based mata, English Detecting and	10
Unit -2			
Word Level Analysis: Unsmooth Interpolation and Backoff – Word Stochastic and Transformation-ba Markov and Maximum Entropy m	ed N-grams, Evaluating N-gran d Classes, Part-of-Speech Taggir ased tagging, Issues in PoS ta odels.	ns, Smoothing, ng, Rule-based, gging, Hidden	10
Unit – 3			I
Syntactic Analysis: Context-Free Treebanks, Normal Forms for gran Ambiguity, Dynamic Programmin Probabilistic CYK, Probabilistic L of feature structures	ee Grammars, Grammar rules nmar, Dependency Grammar, Sy- ng parsing, Shallow parsing, Prol exicalized CFGs, Feature structur	for English, ntactic Parsing, babilistic CFG, res, Unification	10
Unit – 4			
Semantics And Pragmatics: Requ Description Logics, Syntax-Driven Senses, Relations between Senses Sense Disambiguation, WSD u Bootstrapping methods, Word S methods.	irements for representation, First Semantic analysis, Semantic atta , Thematic Roles, selectional res using Supervised, Dictionary Similarity using Thesaurus and	t-Order Logic, chments, Word trictions, Word & Thesaurus, Distributional	10
Unit – 5			1
Discourse Analysis And Lexical I Reference Phenomena, Anaphor Algorithm, Coreference Resolution Treebank, Brill's Tagger, WordNe National Corpus (BNC).	Resources: Discourse segmentati ra Resolution using Hobbs a n, Resources: Porter Stemmer, Ler et, PropBank, FrameNet, Brown	on, Coherence, and Centering mmatizer, Penn Corpus, British	10

Text(T) / Reference(R) Books:

T1 Daniel Jurafsky, James H. Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech, Pearson Publication, 2014.

T2	Steven Bird, Ewan Klein and Edward Loper, Natural Language Processing with
	Python, First Edition, OReilly Media, 2009.
R 1	Breck Baldwin, Language Processing with Java and LingPipe Cookbook, Atlantic
	Publisher, 2015.
R2	Richard M Reese, Natural Language Processing with Java, OReilly Media, 2015.
R3	Nitin Indurkhya and Fred J. Damerau, Handbook of Natural Language Processing,
	Second, Chapman and Hall/CRC Press, 2010. Edition
R4	Tanveer Siddiqui, U.S. Tiwary, Natural Language Processing and Information
	Retrieval, Oxford University Press, 2008.

Cours	Course Outcomes: After the completion of the course, student will be able to	
CO1	Demonstrate a given text with basic Language features	
CO2	To design an innovative application using NLP components	
CO3	Explain a rule-based system to tackle morphology/syntax of a language	
CO4	To design a tag set to be used for statistical processing for real-time applications	
CO5	To compare and contrast the use of different statistical approaches for different types	
	of NLP applications.	

BIG DATA ANALYTICS (Professional Elective – IV)			
Subject Code	21AMAMT702C	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Introduction: Introduction to be Challenges of Conventional Syst Analytic Processes and Tools, An	ig data: Introduction to Big I ems, Intelligent data analysis, N alysis vs Reporting.	Data Platform, lature of Data,	10
Unit -2			
Stream Processing: Mining data st Data Model and Architecture, St Filtering Streams, Counting Disti Counting Oneness in a Window, I (RTAP) Applications, Case Studie	reams: Introduction to Streams Co cream Computing, Sampling Dat nct Elements in a Stream, Estima Decaying Window, Real time Ana ss - Real Time Sentiment Analysis	oncepts, Stream a in a Stream, ating Moments, lytics Platform - Stock Market	10
Predictions.			
Unit – 3			
Introduction to Hadoop: Hadoop: History of Hadoop, the Hadoop Distributed File System, Components of Hadoop Analysing the Data with Hadoop, Scaling Out, Hadoop Streaming, Design of HDFS, Java interfaces to HDFS Basics, Developing a Map Reduce Application, How Map Reduce Works, Anatomy of a Map Reduce Job run, Failures, Job Scheduling, Shuffle and Sort, Task execution, Map Reduce Types and Formats, Map Reduce Features Hadoop environment		10	
Unit – 4			
Frameworks and Applications: Frameworks: Applications on Big Data Using Pig and Hive, Data processing operators in Pig, Hive services, HiveQL, Querying Data in Hive, fundamentals of HBase and ZooKeeper.		10	
Unit – 5			
Predictive Analytics and Visua regression, Multiple linear regre Visualizations, Visual data analysi application	lizations: Predictive Analytics, ssion, Interpretation of regressions s techniques, interaction technique	Simple linear on coefficients, es, Systems and	10

Text	r(T) / Reference(R) Books:
T1	Tom White, "Hadoop: The Definitive Guide", Third Edition, O'reilly Media, Fourth
	Edition, 2015.
T2	Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos,
	"Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data",
	McGrawHill Publishing, 2012.
T3	Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", CUP,
	2012
R1	Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data
	Streams with Advanced Analytics", John Wiley& sons, 2012.

R2	Paul Zikopoulos, DirkdeRoos, Krishnan Parasuraman, Thomas Deutsch, James Giles,
	David Corrigan, "Harness the Power of Big Data: The IBM Big Data Platform", Tata
	McGraw Hill Publications, 2012.
R3	Arshdeep Bahga and Vijay Madisetti, "Big Data Science & Analytics: A Hands On
	Approach ", VPT, 2016.
R4	Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and
	its Applications (WILEY Big Data Series)", John Wiley & Sons, 2014.

Cours	se Outcomes: After the completion of the course, student will be able to
CO1	Illustrate big data challenges in different domains including social media,
	transportation, finance and medicine
CO2	Use various techniques for mining data stream
CO3	Design and develop Hadoop
CO4	Identify the characteristics of datasets and compare the trivial data and big data for
	various applications
CO5	Explore the various search methods and visualization techniques

SOFT COMP	UTING (Professional Elective -	- IV)	
Subject Code	21AMAMT702D	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Fuzzy Set Theory: Introduction to Basic Definition and Terminolog Formulation and Parameterization Principle and Fuzzy Relations. Fu Sugeno Fuzzy Models.	Neuro – Fuzzy and Soft Computi gy, Set-theoretic Operations, Me h, Fuzzy Rules and Fuzzy Reasor zzy Inference Systems, Mamdani	ng, Fuzzy Sets, mber Function ning, Extension Fuzzy Models,	10
Unit -2			
Optimization: Derivative based Optimization, Descent Methods, The Method of Steepest Descent, Classical Newton's Method, Step Size Determination, Derivative-free Optimization, Genetic Algorithms			10
Unit – 3			
Artificial Intelligence: Introduction, Knowledge Representation, Reasoning, Issues and Acquisition: Prepositional and Predicate Calculus Rule Based knowledge Representation Symbolic Reasoning, Heuristic Search: Techniques for Heuristic search Heuristic Classification.		10	
Unit – 4			
Neuro Fuzzy Modeling: Adaptive Neuro-Fuzzy Inference Systems, Architecture, Hybrid Learning Algorithm, Learning Methods that Cross-fertilize ANFIS and RBFN, Framework Neuron Functions for Adaptive Networks, Neuro Fuzzy Spectrum.		10	
Unit – 5			
Applications Of Computational In Inverse Kinematics Problems, Aut Computing for Color Recipe Pred	telligence: Printed Character Rec tomobile Fuel Efficiency Predictioniction.	ognition, on, Soft	10

Text	c(T) / Reference(R) Books:
T1	J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004,
	Pearson Education 2004
T2	N.P.Padhy, "Artificial Intelligence and Intelligent Systems", Oxford University Press,
	2006.
R1	Elaine Rich & Kevin Knight, Artificial Intelligence, Second Edition, Tata Mcgraw
	Hill Publishing Comp., 2006, New Delhi.
R2	Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.
R3	Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine
	Learning", Addison Wesley, N.Y., 1989.
R4	S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic
	Algorithms", PHI,

Cour	se Outcomes: After the completion of the course, student will be able to
CO1	Able to apply fuzzy logic and reasoning to handle uncertainty in engineering
	problems Make use of genetic algorithms to combinatorial optimization problems
CO2	Apply artificial intelligence techniques, including search heuristics, knowledge
	representation, planning and reasoning.
CO3	Learn and apply the principles of self adopting and self organizing neuro fuzzy inference
	systems
CO4	Evaluate and compare solutions by various soft computing approaches for a given
	problem

CLOUD COM	PUTING (Professional Elective	e – V)	
Subject Code	21AMAMT703A	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	49	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Systems Modeling, Clustering and Virtualization: Scalable Computing over the Internet-The Age of Internet Computing, Scalable computing over the internet, Technologies for Network Based Systems, System models for Distributed and Cloud Computing, , Performance, Security and Energy Efficiency			10
Unit -2			
Virtual Machines and Virtualization of Clusters and Data Centers: Implementation Levels of Virtualization, Virtualization Structures/ Tools and Mechanisms, Virtualization of CPU, Memory and I/O Devices, Virtual Clusters and Resource Management, Virtualization for Data Center Automation			10
Unit – 3			
Cloud Platform Architecture: Cloud Computing and Service Models, Public Cloud Platforms, Service Oriented Architecture, Programming on Amazon AWS and Microsoft Azure			10
Unit – 4			
Cloud Resource Management and Scheduling: Policies and Mechanisms for Resource Management, Applications of Control Theory to Task Scheduling on a Cloud, Stability of a Two Level Resource Allocation Architecture, Feedback Control Based on Dynamic Thresholds. Coordination of Specialized Autonomic Performance Managers, Resource Bundling, Scheduling Algorithms for Computing Clouds-Fair Queuing, Start Time Fair Queuing.			10
Unit – 5	•		
Storage Systems: Evolution of sto and database, distributed file syste system	rage technology, storage models, ems, general parallel file systems.	file systems Google file	9

Text	c(T) / Reference(R) Books:
T1	Distributed and Cloud Computing, Kai Hwang, Geoffry C. Fox, Jack J. Dongarra
	MK Elsevier.
T2	Cloud Computing, Theory and Practice, Dan C Marinescu, MK Elsevier.
R1	Cloud Computing, A Hands on approach, ArshadeepBahga, Vijay Madisetti,
	University Press
R2	Cloud Computing, A Practical Approach, Anthony T Velte, Toby J Velte, Robert
	Elsenpeter, TMH
R3	Mastering Cloud Computing, Foundations and Application Programming, Raj Kumar
	Buyya, Christen vecctiola, S Tammaraiselvi, TMH

Cour	se Outcomes: After the completion of the course, student will be able to
CO1	Illustrate the key dimensions of the challenge of Cloud Computing
CO2	Classify the Levels of Virtualization and mechanism of tools
CO3	Analyze Cloud infrastructure including Google Cloud and Amazon Cloud
CO4	Create Combinatorial Auctions for cloud resource and design scheduling algorithms for computing cloud
CO5	Assess control storage systems and cloud security, the risks involved its impact and develop cloud application

EXPERT SY	STEMS (Professional Elective -	- V)	
Subject Code	21AMAMT702C	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03	·	
Unit -1			Hours
Introduction to AI programming la	anguages, Blind search strategies,	Breadth-first –	10
Depth-first – Heuristic search tech	niques Hill Climbing – Best first	– A Algorithms	
AO* algorithm – game tress, Mi	in-Max algorithms, game playin	g – Alpha-beta	
Unit -2			
Knowledge representation issues predicate logic – logic programming Semantic nets- frames and inheritance, constraint propagation; Representing Knowledge using rules, Rules-based deduction systems.			10
Unit – 3			
Introduction to Expert Systems, Architecture of expert systems, Representation and organization of knowledge, Basics characteristics, and types of problems handled by expert systems.			10
Unit – 4			
Expert System Tools: Techniques of knowledge representations in expert systems, knowledge engineering, system-building aids, support facilities, stages in the development of expert systems			10
Unit – 5			
Building an Expert System: Expert system development, Selection of the tool, Acquiring Knowledge, Building process. Problems with Expert Systems: Difficulties, common pitfalls in planning, dealing with domain experts, difficulties during development		10	

Text	t(T) / Reference(R) Books:
T1	Elain Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw-Hill, New
	Delhi.
T2	Waterman D.A., "A Guide to Expert Systems", Addison Wesley Longman
R 1	Stuart Russel and other Peter Norvig, "Artificial Intelligence – A Modern Approach",
	Prentice-Hall.
R3	Patrick Henry Winston, "Artificial Intelligence", Addison Wesley
R4	Patterson, Artificial Intelligence & Expert System, Prentice Hall India, 1999.
R5	Hayes-Roth, Lenat, and Waterman: Building Expert Systems, Addison Wesley.
R6	Weiss S.M. and Kulikowski C.A., "A Practical Guide to Designing Expert Systems",
	Rowman & Allanheld, New Jersey.

Course Outcomes: After the completion of the course, student will be able to

CO1	Apply the basic techniques of artificial intelligence.
CO2	Discuss the architecture of an expert system and its tools.
CO3	Understand the importance of building an expert system.
CO4	Understand various problems with an expert system.

DATA VISUALIZATION (Professional Elective – V)			
Subject Code	21AMAMT703C	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Introduction to Data Visualizat perception, visual representation of	tions and Perception: Introductions of data, Gestalt principles, Infor	action of visual nation overload.	10
Unit -2			1
Visual Representations: Creating visual representations, visualization reference model, visual mapping, visual analytics, Design of visualization applications.			10
Unit – 3			1
Classification of Visualization Systems: Classification of visualization systems, Interaction and visualization techniques misleading, Visualization of one, two and multi-dimensional data, text and text documents.			10
Unit – 4			
Visualization of Groups: Visualization of groups, trees, graphs, clusters, networks, software, Metaphorical visualization. Various visualization techniques, data structures used in data visualization.		10	
Unit – 5			
Visualization of Volumetric Data And Evaluation of Visualizations: Visualization of volumetric data, vector fields, processes and simulations, Visualization of maps, geographic information, GIS systems, collaborative visualizations, evaluating visualizations.		10	

Text	(T) / Reference(R) Books:
T1	Ward, Grinstein, Keim, Interactive Data Visualization: Foundations, Techniques, and
	Applications. Natick, 2nd edition, A K Peters, Ltd 2015.
R1	Tamara Munzner, Visualization Analysis & Design ,1st edition, AK Peters
	Visualization Series 2014.
R2	Scott Murray, Interactive Data Visualization for the Web ,2nd Edition, 2017

Course Outcomes: After the completion of the course, student will be able to		
CO1	Identify and recognize visual perception and representation of data.	
CO2	Illustrate about projections of different views of objects.	
CO3	Apply various Interaction and visualization techniques.	
CO4	Analyze various groups for visualization.	
CO5	Evaluate visualizations	

SEMANTIC WEB (Professional Elective – V)			
Subject Code	21AMAMT703D	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Unit -1			Hours
Web Intelligence: Thinking and Intelligent Web Applications, The Information Age ,The World Wide Web, Limitations of Today's Web, The Next Generation Web, Machine Intelligence, Artificial Intelligence, Ontology, Inference engines, Software Agents, Berners-Lee www, Semantic Road Map, Logic on the semantic Web			10
Unit -2			
Knowledge Representation for the Semantic Web: Ontologies and their role in the semantic web, Ontologies Languages for the Semantic Web –Resource Description Framework(RDF) / RDF Schema, Ontology Web Language(OWL), UML, XML/XML, Schema			10
Unit – 3			
Ontology Engineering: Ontology Engineering, Constructing Ontology, Ontology Development Tools, Ontology Methods, Ontology Sharing and Merging, Ontology Libraries and Ontology Mapping, Logic, Rule and Inference Engines.			10
Unit – 4			
Semantic Web Applications, Services and Technology: Semantic Web applications and services, Semantic Search, e-learning, Semantic Bioinformatics, Knowledge Base,XML Based Web Services, Creating an OWL-S Ontology for Web Services, Semantic Search Technology, Web Search Agents and Semantic Methods,			10
Unit – 5			
Social Network Analysis and sem development of the social network Analysis – Electronic Discussion Based Networks, Building Seman features.	antic web: What is social Networks analysis, Electronic Sources for networks, Blogs and Online Comp tic Web Applications with social	ks analysis, [•] Network munities, Web network	10

Text	(T) / Reference(R) Books:
T1	Thinking on the Web – Berners Lee, Godel and Turing, Wiley inter science, 2008.
T2	Social Networks and the Semantic Web, Peter Mika, Springer, 2007.
R1	Semantic Web Technologies, Trends and Research in Ontology Based Systems, J.
	Davies, R. Studer, P. Warren, John Wiley & Sons.
R2	Semantic Web and Semantic Web Services -Liyang Lu Chapman and Hall/CRC
	Publishers,(Taylor & Francis Group)
R3	Information sharing on the semantic Web - Heiner Stucken schmidt; Frank Van
	Harmelen, Springer Publications.
R4	Programming the Semantic Web, T. Segaran, C. Evans, J. Taylor, O'Reilly, SPD.

Course Outcomes: After the completion of the course, student will be able to		
CO1	Demonstrate social network analysis and measures.	
CO2	Analyze random graph models and navigate social networks data	
CO3	Apply the network topology and Visualization tools.	
CO4	Analyze the experiment with small world models and clustering models.	
CO5	Compare the application driven virtual communities from social network Structure.	

MANAGEMENT SCIENCE			
Subject Code	21AMMST7060	IA Marks	30
Number of Lecture Hours/Week	3	Exam Marks	70
Total Number of Lecture Hours	50	Exam Hours	03
	Credits – 03		
Course objectives:			
1. To understand the concept of	Management its nature importance	e, Management	t
theories, concept of decis	ion making and organization princ	iples and struc	tures.
2. To understand the concept of	production management in the org	ganization. Wo	orkstudy,
3 To understand the concept of	² HRM and its functions Marketing	o Management	ŀ
Strategic management its	components	5 Management	.,
4. To understand the concept of	project management PERT, CPM	and Project Cr	ashing.
5. To understand the concepts o	f recent trends in management	5	U
Unit -I: Introduction to Manager	ment		Hours
Concept -nature and important	ce of Management – Function	s of	
Management – Evaluation of Ma	nagement thought- Theories of N	Iotivation –	10
Decision-making process – Desig	gning organization Structure - P	rinciples of	
organization - Types of organizatio	on structure.		
Unit -II: Operations Managemen	nt		
Nature & Objectives of OM-Prod	uction Methods-Plant Location	&	
LayoutStudy &its significance - Work study- Statistical Quality Control-			10
Control charts (P-chart, R-chart, and C chart). Simple problems- Material			20
Management: Need for Inventory control- EOQ, ABC analysis (simple			
problems) and Types of ABC analysis(HML,SDE, VED, and FSN analysis).			
Unit-III: Functional Management & Strategic Management			
Functional Management: Conce	pt of HRM, HRD and PMIR-	Maulastina	
Functions of HRM - Marketin	ig Management- Functions of distributed and di	Marketing,	
Marketing strategies based on product Life Cycle, Channels of distributions.			10
Strategic Management: Vision, Mission, Goals, Strategy – Elements of			
Corporate Planning Process – Environmental Scanning – SwO1 analysis- Steps			
In Strategy Formulation and Imple	mentation, Generic		
Strategy alternatives			
Unit –IV: Project Management:	(PERI/CPM)		
Identifying Critical Bath	rence between PERI and CPM	(Simple	10
Problems)	bability- Project Crashing	(Simple	10
Unit V: Contomporary Managar	mont Practicos		
Daria concentra of MIS MDD	Justin Time (UT) system To	tal Quality	
Managamant (TOM) Six sigma	Supply Chain Management	nai Quality	
Enterprise Descures Dianning (DD) Dusings Process outcours	ing (PDO)	10
Business process De anginestines	and Ronah Marking Dalanged Sec	ang (BrO),	
business process ke-engineering a	ind Dench Warking, Balanced Sco	ne Caru.	

Text(T) / Reference(R) Books:		
T1	Dr. P. Vijaya Kumar & Dr. N. Appa Rao, 'Management Science' Cengage, Delhi,	
	2012.	
T2	Dr. A. R. Aryasri, Management Science' TMH 2011.	
R1	Koontz & Weihrich: 'Essentials of Management' TMH 2011	
R2	Seth & Rastogi: Global Management Systems, Cengage Learning, Delhi, 2011.	
R3	Robbins: Organizational Behaviors, Pearson Publications, 2011	
R4	Kanishka Bedi: Production & Operational Management, Oxford Publications, 2011.	
R5	Manjunath: Management Science, Pearson Publications, 2013.	
R6	Biswajit Patnaik: Human Resource Management, PHI, 2011.	
R7	Hitt and Vijaya Kumar: Strategic Management, Cengage Learning.	

	Course Outcomes: On completion of this course, students can
CO1	Students are able to understand the concept and functions of Management, and
	Theories of Motivation, Styles of Leadership.
CO2	Students are able to understand the Statistical Quality Control Techniques,
	Methods of inspection, the concept of Inventory Management and Control.
CO3	Students are understand the functional areas of organization i.e., Marketing
	Management, Human Resource Management, and Strategic Management
CO4	Students are able to understand Project Management Techniques.
CO5	Students are able to Understand the various contemporary issues in Management
	Practices like TQM and BPO etc.

MACHINE LEARNING WITH GO (Skill Oriented Course)			
Subject Code	21AMAML7070	IA Marks	50
Number of Tutorial Hours/Week	03(P)	Exam Marks	50
Total Number of Practice Hours	36	Exam Hours	03
Credits – 2			
Prerequisites:			
1. Bash Shell			
2. Go-an editor			
List of Experiments:			
1. a) Write a Go program to read	CSV file and find the n	naximum value in a p	oarticular
column.			
b) Write a Go program to read iris of	lataset which is in csv for	rmat and demonstrate	handling
of unexpected fields, types and man	ipulating CSV data.		
2. a) Demonstrate how JSON data c	an be parsed using Go.		
b) Demonstrate how to connect and	l Querying SQL like data	abases (Postgres MyS	QL, SQL
Lite) using Go			
3. Demonstrate how to cache data in	n memory using Go		
4. a) Demonstrate how to represent	matrices and vectors in C	.	
b) Write a Go program to get statistical measures like mean, median, standard deviation and			
so on for any dataset.			
c) Write a Go program to visualize	data distributions using H	listogram, Box Plots	
5. a) Write a Go program to demons	strate Mean Squared Erro	r (MSE), Mean Absol	ute Error
(MAE), R 2 (R Squared).	1		
b) Write a Go program to compute	Accuracy, Precision, Rec	all, AUC (Area Under	Cover)
6. a) Demonstrate how to build a lin	near regression model usi	ing Go. b) Demonstrat	e how to
build a multiple linear regression m	odel using Go.		
7 Demonstrate how to build a logistic regression model using Go			
8 Apply k-nearest neighbor classifier on iris dataset using Co			
9 Ruild a decision tree on iris dataset using Go			
10 Demonstrate K-Means clusterin	g method using Go		
11. Build auto regressive models fo	r time series data using G		
12. Demonstrate how to build a sim	n time series data using O		
12. Demonstrate now to build a sim	pre neural network using	00	

1.

References:

 $https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_0130944292286873602$

383_share d/overview

Course Outcomes: The end of the course student will be able to		
CO1	Apply preprocessing techniques on real world datasets	
CO2	Apply apriori algorithm to generate frequent item sets.	
CO3	Apply Classification and clustering algorithms on different datasets.	
IV Year -II Semester

Proposed Course Structure for IV B.Tech AIML Under the Regulations of SITE-21									
	Semester -VIII								
S.No	Subjec t Code	Course Code	Course	L	Т	Р	С		
1	PC	21AMMAT5010	Project Work	3	0	0	12		
	TOTAL						12		

Minors Courses

Department of Artificial Intelligence and Machine Learning Minor Courses (For other Departments)

Note:

- 1. Any FOUR courses need to be studied from PART-A after their completion of II B. Tech I Sem.
- 2. From Part B, TWO, NPTEL courses of minimum EIGHT-week duration covering a total of 4 credits (offered by AI & ML Department) should be completed, Student can register at any time after the completion of II B.Tech. I Sem.
- 3. Students can pursue suggested MOOC Courses via NPTEL from II B. Tech II Sem and onwards, by prior information to the concern.

S.No	S.No Course Code Name of the Course				Р	C
1	21YYAMMXXXX	Soft Computing	3	1	0	4
2	21YYAMMXXXX	Introduction to AI & Machine Learning	3	1	0	4
3	21YYAMMXXXX	Introduction to Data Science	3	1	0	4
4	21YYAMMXXXX	Deep Learning	3	1	0	4
5	21YYAMMXXXX	IOT	3	1	0	4
	1	Total Credits (Any 4 Courses)				1

PART A

S.N 0	Name of the MOOC Course	Course Instructor	Links
1	Artificial Intelligence: Search Methods for Problem solving	Prof. Deepak Khemani, IITM	https://onlinecourses.nptel.ac.i n/noc22_cs67/preview
2	Introduction to Machine Learning	Prof. Balaraman Ravindran, IITM	https://onlinecourses.nptel.ac.i n/noc22_cs73/preview
3	Data Science for Engineers	Prof. Ragunathan Rengasamy Prof. Shankar Narasimhan, IITM	https://onlinecourses.nptel.ac.i n/noc22_cs72/preview
4	Machine Learning for Engineering and Science Applications	Dr. Balaji Srinivasan, IIT Madras	https://nptel.ac.in/courses/10 6106198

	Soft Computin	σ			
Subject Code	21YYAMMXXXX	s Internal Marks	30		
Number of Lecture	3L+1T		30		
Hours/Week	51111	External Marks	70		
Total Number of Lecture	50		3		
Hours	20	Exam Hours	5		
Pre-requisite			Credits -4 0		
Course Objective: To introduce the	fundamentals of deer	learning and the main resea	rch activities		
in this field. To learn architectures a	and optimization method	ods for deep neural network t	raining.		
Unit-1	1	•	Hours		
Introduction to neural networks Str	ucture and working of	Biological Neural Network,			
Fundamentals of Artificial Neura	l Networks & Applic	cations, Characteristics of	10		
Artificial Neural Networks, History	of neural network r	esearch, characteristics of	10		
neural networks terminology					
Unit-2					
Neural networks models and Learn	ing Methods Models c	of neuron McCulloch – Pitts			
model, Perceptron, Adaline model,	Basic learning laws, T	opology of neural network	10		
architecture, Multilayer Neural N	letworks, Learning N	lethods, Backpropagation,	10		
Counter propagation, ART, BAM, As	ssociative memories.				
Unit-3					
Introduction, Fuzzy sets, Fuzzy mod	lel, Fuzzy rule generati	on Fuzzy inference system,	10		
Defuzzification, Architecture of a N	euro-Fuzzy system and	d its applications.	10		
Unit-4					
Supervised learning: Primitive algo	orithms, Generative a	Igorithms, Support Vector			
Machine, Ensemble methods. Unsu	pervised learning: K-m	neans, Principal component	10		
analysis, Independent component a	analysis. Reinforcemer	nt learning and control.			
Unit-5					
Applications Applications of GA & G	SP, Hybrid systems.		10		
Course Outcomes: After comple	tion of course, studer	nts would be able to:			
1. Understand, Identify and descr	ribe soft computing t	echniques and their roles in	n building		
intelligent machines.					
2. Apply a soft computing metho	odology for a particul	lar problem.			
3. Analyze and compare solution	ons by various soft	computing approaches fo	r a given		
problem. 4. Apply genetic algori	thms to combinatoria	al optimization problems.			
5. Evaluate and compare solutions by various soft computing approaches for a given					
problem.					
Text Books/Suggested References					
1. Neuro juzzy and soft computing by Jang, Pearson Education, 1996					
2. Learning and Soft Computing by Recman, Pearson Education, 2001					
5. Fuzzy Sets and Fuzzy Logic - Kilf a	inu Yuan, PHI, 1995	0002			
5 Bio-Inspired Artificial Intelligence	- Dario Eloreano PUI	2003			
6 Soft Computing - Ilwindernal Sin	ah Khanna Book Publi	i, 2000 ishing 2015			
	gii, Nilalilla DUUK PUDI				

Introduction to AI & Machine Learning					
Subject Code	21YYAMMXXXX	Internal Marks	30		
Number of Lecture	3L+1T	Extomal Maulto	70		
Hours/Week	External Warks	70			
Total Number of Lecture	Exom Hours	3			
Hours					
Pre-requisite			Credits -4.0		
Course objectives:					
Enable the students to					
• To review and strengthen in	nportant mathematical	concepts required for AI &	ML.		
• Introduce the concept of	learning patterns from	n data and develop a stron	g theoretical		
foundation for understandin	ng state of the art Mach	nine Learning algorithms.			
Unit-1					
Defining Artificial Intelligence, Defining AI techniques, Using Predicate Logic and					
Representing Knowledge as Rules,	facts in logic, Computable	10			
functions and predicates, Procedural vs Declarative knowledge, Logic Programming,					
Mathematical foundations: Matrix Theory and Statistics for Machine Learning.					
Unit-2					
Idea of Machines learning from data, Classification of problem –Regression and					
Classification, Supervised and Unsupervised learning.					
Unit-3					
Linear Regression: Model representation for single variable, Single variable Cost					
Function, Gradient Decent for Linear Regression, Gradient Decent in practice.					
Unit-4					
Logistic Regression: Classification, Hypothesis Representation, Decision Boundary,					
Cost function, Advanced Optimizat	10				
Overfitting.					
Unit-5					
Discussion on clustering algorithms and use-cases cantered around clustering and					
classification.					

Course outcomes:

On completion of the course student will be able to:

- 1. Design and implement machine learning solutions to classification, regression and clustering problems.
- 2. Evaluate and interpret the results of the different ML techniques.
- 3. Design and implement various machine learning algorithms in a range of Real-world applications.
- 4. Learn Regression techniques.
- 5. Learn clustering algorithms.

Text Books:

- 1. Saroj Kaushik, Artificial Intelligence, Cengage Learning, 1st Edition 2011.
- 2. Anindita Das Bhattacharjee, "Practical Workbook Artificial Intelligence and Soft Computing for beginners, Shroff Publisher-X team Publisher.
- 3. Yuxi (Hayden) Liu, "Python Machine Learning by Example", Packet Publishing Limited, 2017.

Reference Books:

- 1. Wolfgang Ertel, "Introduction to Artificial Intelligence", 1st Edition, Springer, 2017.
- 2. Tom Mitchell, Machine Learning, McGraw Hill, 2017.
- 3. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2011.

In	troduction to Data	Science				
Subject Code	21YYAMMXXXX	Internal Marks	30			
Number of Lecture	3L+1T		70			
Hours/Week		External Marks	70			
Total Number of Lecture	50	Enore Hours	3			
Hours		Exam Hours				
Pre-requisite			Credits -4.0			
Course objectives:						
Enable the students to						
Course Outcomes: Upon success	ful completion of the	e course, the student will b	e able to:			
Apply principles of Num	Py and Pandas to the	e analysis of data.				
• Make use of various file	formats in loading a	nd storage of data.				
• Identify and apply the ne	ed and importance o	of pre-processing technique	es.			
• Show the results and pre	sent them in a pictor	ial format.				
Critically evaluate data v	visualizations based of	on their design				
Unit-1			Hours			
Data science: definition, Datafi	cation, Exploratory	Data Analysis, The Data				
science process, A data scientis	st role in this proce	ess. NumPy Basics: The				
NumPy ndarray: A Multidimens	sional Array Object,	Creating ndarrays ,Data	10			
Types for ndarrays, Operations	between Arrays and	Scalars, Basic Indexing	10			
and Slicing, Boolean Indexing, F	ancy Indexing, Data	Processing Using Arrays,				
Expressing Conditional Logic	as Array Operations	s, Methods for Boolean				
Arrays, Sorting, Unique.						
Unit-2 Cotting Storted with populars	Introduction to nond	aa Libuarry Aushitaatawa				
Getting Started with pandas:	miroduction to pand	as, Library Architecture,				
Essential Eurotionality Reindexi	ing Dropping entrie	a Frame, much Objects, s from an axis Indexing				
selection and filtering) Sorting	and ranking Sumr	parizing and Computing	10			
Descriptive Statistics Unique V	alues Value Counts	Handling Missing Data				
filtering out missing data	andes, varue counts,	, mananing witssing Data,				
Unit-3						
Data Loading Storage and File	Formats · Reading	and Writing Data in Text				
Format Reading Text Files in	Pieces Writing D	ata Out to Text Format				
Manually Working with Delimi	ted Formats ISON	Data XML and HTML:				
Web Scraping, Binary Data Forr	nats Using HDF5 Fc	ormat. Reading Microsoft	10			
Excel Files Interacting with	Databases Storing	and Loading Data in				
MongoDB.						
Unit-4						
Data Wrangling: Combining	and Merging Dat	a Sets. Database style				
DataFrame Merges, Merging	on Index. Concate	nating Along an Axis.				
Combining Data with Overlap, Reshaping and Pivoting, Reshaping with						
Hierarchical Indexing, Data Transformation, Removing Duplicates, Replacing						
Values.						
Unit-5						
Plotting and Visualization: A	Brief matplotlib A	API Primer, Figures and	10			
Subplots, Colors, Markers, and	Line Styles, Ticks	s, Labels, and Legends,	10			

Annotations and Drawing on a Subplot, Saving Plots to File, Plotting Functions
in pandas, Line Plots, Bar Plots, Histograms and Density Plots, Scatter Plots
Course outcomes:
On completion of the course student will be able to:
1. Design and implement machine learning solutions to classification, regression and clustering problems.
2. Evaluate and interpret the results of the different ML techniques.
3. Design and implement various machine learning algorithms in a range of Real-world applications.
4. Learn merging of Data sets and wrangling.
5. Learn different libraries for plotting the data sets and learn visualization.
Text Books:
1) Wes McKinney, "Python for Data Analysis", O'REILLY, ISBN:978-1-449-31979-3, 1 st
edition, October 2012.
2) Rachel Schutt & O'neil, "Doing Data Science", O'REILLY, ISBN:978-1-449-35865-5,
1 st edition, October 2013.
Reference Books:
1) Joel Grus, "Data Science from Scratch: First Principles with Python", O'Reilly Media,

2015

2) Matt Harrison, "Learning the Pandas Library: Python Tools for Data Munging, Analysis, and Visualization, O'Reilly, 2016.

Deep Learning						
Subject Code	21YYAMMXXXX	Internal Marks	30			
Number of Lecture	3L+1T	External Marks	70			
Hours/Week			10			
Total Number of Lecture	50	Exam Hours	3			
Hours Bro requisite	Noural natworks		Credits 10			
Course Objective: To introduce	the fundamentals of	f deen learning and the m	ain research			
activities in this field. To learn	architectures and c	potimization methods for	deep neural			
network training.						
Unit-1			Hours			
Introduction History of Deep L	earning, McCulloch	Pitts Neuron, Multilayer				
Perceptrons (MLPs), Representa	tion Power of MLPs	, Sigmoid Neurons, Feed	10			
Forward Neural Networks, Back	propagation					
Unit-2						
Activation functions and para	meters: Gradient De	escent (GD), Momentum				
Based GD, Nesterov Accelerate	d GD, Stochastic G	D, Principal Component	10			
Hyper-parameter	singular value Decor	iipositioii, raraiileters v/s				
Unit-3						
Auto-encoders & Regularizat	tion: Auto encoders	s and relation to PCA.				
Regularization in auto encode	ers, Denoising auto	encoders, Sparse auto				
encoders, Regularization: Bias	Variance Tradeoff,	L2 regularization, Early	10			
stopping, Dataset augmentation, Encoder Decoder Models, Attention						
Mechanism, Attention over imag	ges, Batch Normaliza	tion				
Unit-4						
Deep Learning Models:	Introduction to	CNNs, Architecture,				
VGGNat Googl aNat ParNat	Introduction to P	NNa Back propagation	10			
through time (BPTT) Vanishing	and Exploding Gra	dients Truncated BPTT	10			
GRU. LSTMs	g und Exploding Old	dientis, francated Di 11,				
Unit-5						
Deep Learning Applications	s: Image Processi	ng, Natural Language	10			
Processing, Speech recognition, Video Analytics						
Course Outcomes: After compl	etion of course, stude	ents would be able to:				
1. Understand the fundamentals of deep learning and the main research activities in this						
field						
2. Kemember architectures and optimization methods for deep neural network training						
4 Critically evaluate the method's applicability in new contexts						
5. Construct new applications to solve problems						
Text Books/Suggested References: 1. Ian Goodfellow, YoshuaBengio, Aaron Courville.						
Deep Learning, the MIT press, 2016						
2. Bengio, Yoshua. " Learning deep architectures for AI." Foundations and trends in						
Machine Learning 2.1, Now Pub	Machine Learning 2.1, Now Publishers, 2009					
3. Deep Learning, Rajiv Chopra,	3. Deep Learning, Rajiv Chopra, Khanna Book Publishing, Delhi 2020.					
4. <u>https://nptel</u> .ac.in/courses/106	4. <u>https://nptel</u> .ac.in/courses/106/106/106106184/					

Subject Code 21YYAMMXXXX Internal Marks 30 Number of Lecture 3 External Marks 70 Total Number of Lecture 50 Exam Hours 3 Hours/Week 3 External Marks 70 Total Number of Lecture 50 Exam Hours 3 Pre-requisite Machine Credits -4.0 Course Objective: To introduce the fundamentals of deep learning and the main research activities in this field. To learn architectures and optimization methods for deep neural network training. Hours Unit-1 Introduction to IOT: What is IoT, how does it work? Difference between training. Hours Introduction to IOT: What is IoT, how does it work? Difference between training. 10 Boards in Marke Unit-2 Introduction to Create Solutions: Explore Raspberry Pi, setting up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Celluar IoT, LPWAN) 10 Unit-4 Iot Applications: Industrial Internet 4.0, Applications such a		ΙΟΤ					
Number of Lecture Hours/Week 3 External Marks 70 Total Number of Lecture Hours 50 Exam Hours 3 Pre-requisite Machine Learning Credits -4.0 Course Objective: To introduce the fundamentals of deep learning and the main research activities in this field. To learn architectures and optimization methods for deep neural network training. Hours Unit-1 Unit-1 Hours Hours String Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 IoT Applications in dustrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Gogle Maps, Waze, WhatsApp, OlaPositioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motio	Subject Code	21YYAMMXXXX	Internal Marks	30			
Hours/Week External Marks 70 Total Number of Lecture 50 Exam Hours 3 Pre-requisite Machine Learning Credits -4.0 Course Objective: To introduce the fundamentals of deep learning and the main research activities in this field. To learn architectures and optimization methods for deep neural network training. Hours Unit-1 Hours Hours 10 Boards in Marke Hours Status 10 Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Blortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN) Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: GPS, GLONASS, IRNSS, Galieo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibr	Number of Lecture	3	External Marine	70			
Total Number of Lecture Hours 50 Exam Hours 3 Pre-requisite Machine Learning Credits -4.0 Course Objective: To introduce the fundamentals of deep learning and the main research activities in this field. To learn architectures and optimization methods for deep neural network training. Hours Unit-1 Hours Hours Introduction to IoT: What is IoT, how does it work? Difference between lembedded device and IoT device, Properties of IoT device, IoT Ecosystem, IoT Decision Framework, IoT Solution Architecture Models, Major IoT Boards in Marke Hours Unit-2 Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices 10 Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orienta	Hours/Week		External Marks	70			
Hours Description Pre-requisite Machine Learning Credits -4.0 Course Objective: To introduce the fundamentals of deep learning and the main research activities in this field. To learn architectures and optimization methods for deep neural network training. Hours Introduction to IoT: What is IoT, how does it work? Difference between Embedded device and IoT device, Properties of IoT device, IoT Ecosystem, IoT Decision Framework, IoT Solution Architecture Models, Major IoT Boards in Marke Hours Unit-1 Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibrat	Total Number of Lecture	50	Exam Lours	3			
Pre-requisite Machine Learning Credits -4.0 Course Objective: To introduce the fundamentals of deep learning and the main research activities in this field. To learn architectures and optimization methods for deep neural network training. Hours Unit-1 Hours Hours Introduction to IoT: What is IoT, how does it work? Difference between Embedded device and IoT device, Properties of IoT device, IoT Ecosystem, IoT Decision Framework, IoT Solution Architecture Models, Major IoT Boards in Marke 10 Unit-2 Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyros	Hours		Exam nouis				
Course Objective: To introduce the fundamentals of deep learning and the main research activities in this field. To learn architectures and optimization methods for deep neural network training. Unit-1 Hours Introduction to IoT: What is IoT, how does it work? Difference between Embedded device and IoT device, Properties of IoT device, IoT Ecosystem, IoT Decision Framework, IoT Solution Architecture Models, Major IoT Boards in Marke 10 Unit-2 Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry [10] 10 MEMS Unit-3 10 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long-range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telemedicine), smart retail 10 Unit-5 Iotaristion and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 10 Unit-4 Iotaristion and noise filtering, Privacy &Security 10 Coluderstand Raspberry's working and implementation. 10 Station and noise fil	Pre-requisite	Machine Learning		Credits -4.0			
activities in this field. To learn architectures and optimization methods for deep neural network training. Unit-1 Hours Introduction to IoT: What is IoT, how does it work? Difference between Embedded device and IoT device, Properties of IoT device, IoT Ecosystem, IoT Decision Framework, IoT Solution Architecture Models, Major IoT Boards in Marke Unit-2 Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security Course Outcomes: After completion of course, students would be able to: 1. Understand Raspberry's working and implementation. 3. Understand Raspberry's working and implementation. 4. Apply various IOT technologies in real-life applications. 5. Understand Raspberry's working and implementation. 3. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), Ist Edition, VPT, 2014 2. Fran	Course Objective: To introduce	the fundamentals of	f deep learning and the m	ain research			
network training. Hours Unit-1 Hours Introduction to IoT: What is IoT, how does it work? Difference between Embedded device and IoT device, Properties of IoT device, IoT Ecosystem, IoT Decision Framework, IoT Solution Architecture Models, Major IoT Boards in Marke 10 Unit-2 Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Iot Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatSApp, Ola Positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 10 1. Understand Raspberry's working and implementation. 10 2. Understan	activities in this field. To learn	architectures and o	optimization methods for	deep neural			
Unit-1 Hours Introduction to IoT: What is IoT, how does it work? Difference between Embedded device and IoT device, Properties of IoT device, IoT Ecosystem, 10 IoT Decision Framework, IoT Solution Architecture Models, Major IoT Boards in Marke 10 Unit-2 Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Longrange communication devices, properties, comparison of these devices (Celluar IoT, LPWAN) 10 Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatSApp, Ola Positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 10 10 Understand various communication p	network training.		1	Ĩ			
Introduction to IoT: What is IoT, how does it work? Difference between Embedded device and IoT device, Properties of IoT device, IoT Ecosystem, 10 IoT Decision Framework, IoT Solution Architecture Models, Major IoT 10 Boards in Marke 10 Unit-2 10 Setting up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Longrange communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 1.10 1. Understand va	Unit-1			Hours			
Embedded device and IoT device, Properties of IoT device, IoT Ecosystem, 10 IoT Decision Framework, IoT Solution Architecture Models, Major IoT 10 Boards in Marke 10 Unit-2 Setting UP Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (IcCellular IoT, LPWAN) 10 Unit-4 Io 10 Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: GPS, GLONASS, IRNSS, Galieo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noi	Introduction to IoT: What is	IoT, how does it we	ork? Difference between				
IoT Decision Framework, IoT Solution Architecture Models, Major IoT Boards in Marke 10 Unit-2 Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 1. Understand various communication protocols used in IoT. 10 Magnetstand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 2. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 3.	Embedded device and IoT device	ce, Properties of IoT	device, IoT Ecosystem,	10			
Boards in Marke Unit-2 Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IOT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long-range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Iot Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 10 1. Understand Raspberry's working and implementation. 10 3. Understand sensors used and IOT architecture along with the industry perspective. 10 Terastand sensors used and IOT architecture along with the industry perspective. 10 1. Understand sensor used and IOT architecture along with the industry perspective. 10	IoT Decision Framework, IoT	Solution Architect	ure Models, Major IoT	10			
Unit-2 Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Image: Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long-range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Image: Communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Image: Communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Image: Communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Image: Communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-5 Image: Communication devices, properties, comparison of these devices (Cellular IoT, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Co	Boards in Marke		-				
Setting Up Raspberry/Arduino to Create Solutions: Explore Raspberry Pi, setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Image: Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long-range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Image: Communication Protocols used in IoT: Types of wireless communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Image: Communication devices, properties, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy & Security 10 10 Understand Raspberry's working and implementation. 10 2 Understand sensors used and IOT architecture along with the industry perspective. 10 10 Team team team team team team team team t	Unit-2						
setting up Raspberry Pi, showing working of Raspberry Pi using SSH Client and Team Viewer, Understand Sensing actions, Understand Actuators and MEMS 10 Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Iot Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Iot Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 1. Understand various communication protocols used in IoT. 10 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. 5. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of	Setting Up Raspberry/Arduine	to Create Solution	s: Explore Raspberry Pi,				
and Team Viewer, Understand Sensing actions, Understand Actuators and 10 MEMS Unit-3 Communication Protocols used in IoT: Types of wireless communication, 10 Major wireless Shortrange communication devices, properties, comparison of 10 these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- 10 range communication devices, properties, comparison of these devices 10 (Cellular IoT, LPWAN) 10 Unit-4 10 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, 10 wearables, smart city, smart grid, connected car, connected health (digital health, telemedicine), smart retail 10 Unit-5 10 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, 10 Ola Positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, 10 Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 10 1. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective.	setting up Raspberry Pi, showin	g working of Raspbo	erry Pi using SSH Client	10			
MEMS Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 10 1. Understand core technology, applications. 10 2. Understand Raspberry's working and implementation. 10 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. 5. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet	and Team Viewer, Understand	Sensing actions, U	nderstand Actuators and	10			
Unit-3 Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 1. Understand Raspberry's working and implementation. 3. Understand Raspberry's working and implementation. 5. Understand sensors used and IOT architecture along with the industry perspective. 5. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	MEMS	-					
Communication Protocols used in IoT: Types of wireless communication, Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Int Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand care technology, applications. 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	Unit-3						
Major wireless Shortrange communication devices, properties, comparison of these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long-range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 10 1. Understand core technology, applications. 10 2. Understand sensors used and IOT architecture along with the industry perspective. 10 Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	Communication Protocols use	d in IoT: Types of	wireless communication,				
these devices (Bluetooth, WIFI, ZigBee, 6LoWPAN), Major wireless Long- range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) 10 Unit-4 Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Internet 4.0, Applications such as: Smart home, wearables, systems, Motion & connecters, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 10 2. Understand Raspberry's working and implementation. 10 3. Understand various communication protocols used in IoT. 10 4. Apply various IOT technologies in real-life applications. 10 5. Understand sensors used and IOT architecture along with the industry perspective. 10	Major wireless Shortrange comm	nunication devices, p	properties, comparison of				
range communication devices, properties, comparison of these devices (Cellular IoT, LPWAN) Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand Raspberry's working and implementation. 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	these devices (Bluetooth, WIFI,	ZigBee, 6LoWPAN	I), Major wireless Long-	10			
(Cellular IoT, LPWAN) Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	range communication devices,	properties, compa	rison of these devices				
Unit-4 IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	(Cellular IoT, LPWAN)						
IoT Applications: Industrial Internet 4.0, Applications such as: Smart home, wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand Raspberry's working and implementation. 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	Unit-4						
wearables, smart city, smart grid, connected car, connected health (digital health, telehealth, telemedicine), smart retail 10 Unit-5 Image: Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 10 1. Understand core technology, applications. 2. Understand Raspberry's working and implementation. 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	IoT Applications: Industrial Int	ernet 4.0, Application	ons such as: Smart home,				
health, telehealth, telemedicine), smart retail Imit-5 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security 10 Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand Raspberry's working and implementation. 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	wearables, smart city, smart gr	id, connected car, c	connected health (digital	10			
Unit-5Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security10Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand Raspberry's working and implementation. 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective.Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	health, telehealth, telemedicine),	smart retail					
 Sensors: Applications of various sensors: Google Maps, Waze, WhatsApp, Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security Course Outcomes: After completion of course, students would be able to: Understand core technology, applications. Understand various communication protocols used in IoT. Apply various IOT technologies in real-life applications. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014 	Unit-5						
Ola Positioning sensors: encoders and accelerometers, Image sensors: cameras, Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security10Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective.10Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 201410	Sensors: Applications of variou	is sensors: Google M	Maps, Waze, WhatsApp,				
Global positioning sensors: GPS, GLONASS, IRNSS, Galileo and indoor localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security10Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand Raspberry's working and implementation. 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective.Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	Ola Positioning sensors: encoder	s and accelerometers	, Image sensors: cameras,				
localization systems, Motion & Orientation Sensors: Accelerometer, Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &SecurityCourse Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand Raspberry's working and implementation. 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective.Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	Global positioning sensors: GP	S, GLONASS, IRN	ISS, Galileo and indoor	10			
Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and characterization and noise filtering, Privacy &Security Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand Raspberry's working and implementation. 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	localization systems, Motion & Orientation Sensors: Accelerometer,						
 characterization and noise filtering, Privacy & Security Course Outcomes: After completion of course, students would be able to: Understand core technology, applications. Understand Raspberry's working and implementation. Understand various communication protocols used in IoT. Apply various IOT technologies in real-life applications. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014 	Magnetometer, Proximity Senso	Magnetometer, Proximity Sensor, Gyroscope Calibration, noise modeling and					
 Course Outcomes: After completion of course, students would be able to: 1. Understand core technology, applications. 2. Understand Raspberry's working and implementation. 3. Understand various communication protocols used in IoT. 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014 	characterization and noise filterin	characterization and noise filtering, Privacy & Security					
 Understand core technology, applications. Understand Raspberry's working and implementation. Understand various communication protocols used in IoT. Apply various IOT technologies in real-life applications. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014 	Course Outcomes: After comple	tion of course, stude	nts would be able to:				
 Understand Raspberry's working and implementation. Understand various communication protocols used in IoT. Apply various IOT technologies in real-life applications. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014 	1. Understand core technology, applications.						
 Understand various communication protocols used in IoT. Apply various IOT technologies in real-life applications. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014 Curpe Distorn Cetting Started with the Internet of Things - O P. ill. M. I. 2011 	2. Understand Kaspberry's working and implementation.						
 4. Apply various IOT technologies in real-life applications. 5. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014 2. Como Distance Costing Started with the Internet of Things. O D. ill. Mathematical Science Cost. 	3. Understand various communication protocols used in IoT.						
 5. Understand sensors used and IOT architecture along with the industry perspective. Text Books / Suggested References: 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014 2. Come Distance Costing Started with the Internet of Things (O D ill M ill 2011) 	4. Apply various for technologies in real-life applications.						
 1. Vijay Madisetti and Arshdeep Bahga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014 2. Come Distance Costing Started with the Internet of Thing. O D ill. Mathematical Science Cost. 	5. Understand sensors used and IOT architecture along with the industry perspective.						
1. vijay Madisetti and Arshdeep Banga, Internet of Things (A Hands-on Approach), 1st Edition, VPT, 2014 2. Francis da Costa, Rethinking the Internet of Things: A Scalable Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	1 ext books / Suggested References:						
Approach to Connecting Everything, 1stEdition, Apress Publications, 2014	1. vijay Madisetti and Arsndeep Banga, internet of Things (A Hands-on Approach), Is						
Approach to Connecting Everything, IstEdition, Apress Publications, 2014	Edition, VP1, 2014 2. Francis	da Costa, Rethinkin	g the internet of Things:	A Scalable			
	Approach to Connecting Everyth	ning, istedition, Apr	things O Detilise Medical	11			

SITE-21 Regulations